Распад и синтез гемоглобина в тканях. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Распад и синтез гемоглобина в тканях.



Ответ: Гемоглобин, как и другие хромопротеиды(хлорофиллпротеиды, миогло-бин и др.), попав с пищей в пищеварительный канал, гидролизуется пищевари-тельными ферментами, распадаясь на белок и простетическую группу(гем). Глобиновая часть подвергается обычным превращениям, которые свойственны простым белкам. Простетическая же группа гемоглобина – гем – окисляется в гематин. Гематин, так же как и хлорофилл,всасывается в кишечнике очень плохо и поэтому выделяется, в основном, с калом. Таким образом, простетиче-ская группа хромопротеидов пищи не может быть использована для синтеза соответствующих сложных белков.

 

Иные превращения свойственны гемоглобину в тканях организма. В печени распад гемоглобина начинается с разрыва α-метиновой связи между 1 и 2 пиррольными кольцами порфиринового ядра. Реакция катализи-руется НАДФ-зависимой оксидазой и приводит к образованию вердоглобина (зеленого пигмента). В реакции участвуют в качестве кофакторов аскорбино-вая кислота, ионы двухвалентного железа и др.В дальнейшем происходит распад вердоглобина на глобин, биливердин и железо. Биливердин в основном в печени превращается при восстановлении в билирубин– главный желчный

пигмент у человека и плотоядных животных.Частично билирубин может об-разовываться также в селезенке и, по-видимому, в эритроцитах.

 

Образовавшийся свободный билирубин плохо растворим в воде и не дает прямой реакции с диазореактивом Эрлиха,так как легко адсорбируется на белках плазмы крови. Поэтому он получил название «непрямого билирубина».

 

Свободный билирубин (непрямой) является для организма токсическим веще-ством. Поступающий с током крови в печень и образовавшийся в печени сво-бодный («непрямой») билирубин подвергается обезвреживанию в печени пу-тем образования с глюкуроновой кислотой диглюкуронида билирубина(час-тично – моноглюкуронида). Он хорошо растворим в воде и дает прямую реак-цию с диазореактивом. Поэтому он получил название«прямой» билирубин. Глюкуроновая кислота вступает в реакцию с билирубином в виде уридинди-фосфатглюкуроновой кислоты в присутствии особого фермента глюкуронид-трансферазы.

Синтез гемоглобина характеризуется многостадийностью. Считается, что пиррольные кольца порфиринового ядра гема синтезируются в организме че-ловека и животных с использованием гликокола(глицина) и сукцинилкоэнзи-ма А при участии фермента, содержащего фосфопиридоксаль.

57. В тканях нуклеиновые кислоты распадаются до мононуклеотидов под влиянием тканевых нуклеаз – дезоксирибонуклеаз и рибонуклеаз, локали-зованных главным образом в митохондриях клеток.

Мононуклеотиды в тканях распадаются дальше до более простых соеди-нений. Первый этап состоит в отщеплении остатка фосфорной кислоты под влиянием тканевых фосфатаз (или нуклеотидаз).

Далее осуществляется перенос пентозы от нуклеозида на фосфорную ки-слоту. Реакция катализируется специфической для каждого нуклеозида рибо-зилтрансферазой (нуклеозидфосфорилазой).

 

Таким путем в результате распада нуклеозидов образуются пентозо-1-фосфат и все виды пуриновых и пиримидиновых оснований,участвующих в построении нуклеиновых кислот.

 

Надо сказать, что нуклеозиды могут расщепляться не только путем пере-носа пентозы от нуклеозида на фосфорную кислоту, но и гидролитическим пу-тем при участии ферментов нуклеозидаз:

Образующиеся пентозо-1-фосфат и пентоза включаются в реакции обме-на, характерные для углеводов.

Пуриновые основания претерпевают последующие из-менения и превращаются в те или иные простейшие азотсодержащие продук-ты, которые либо выводятся из организма, либо откладываются в нем. Первая фаза распада пуриновых оснований заключается в дезами-нировании под влиянием специфических аминогидролаз тех из них,которые имеют аминогруппу. В результате пуриновые основания – аденин превращает-ся в гипоксантин, а гуанин – в ксантин:

Гипоксантин и ксантин окисляются в мочевую кислоту. Ре-акция катализируется ксантиноксидазой, представляющей собой молибденсо-держащий флавопротеид.

Мочевая кислота является конечным продуктом распада пуриновых осно-ваний у человека и некоторых животных(чел В норме концентрация мочевой кислоты в цельной крови человека со-ставляет 0,18-0,24 ммоль/л, а в сыворотке крови 0,1-0,4 ммоль/л. При наруше-нии обмена пуриновых оснований(при подагре, заболеваниях почек, при за-болеваниях, сопровождающихся усиленным распадом нуклеопротеидов – лей-козах, диабете, аллергии и др.) содержание мочевой кислоты может значи-тельно увеличиваться (гиперурикемия).

 

58. Начальным этапом превращений нуклеопротеидов пищи в пищеваритель-ном канале следует считать отщепление нуклеиновой кислоты от белковой части нуклеопротеида. В желудке это происходит либо неферментативным пу-тем под действием кислоты желудочного сока(если разрываются солеобраз-ные связи между нуклеиновой кислотой и белком,имеющим щелочные свой-ства), либо под действием пепсина, либо, наконец, и под влиянием пепсина и под влиянием кислоты желудочного сока. В кишечнике расщепление нуклео-протеидов на белок и нуклеиновую кислоту происходит под влиянием соот-ветствующих протеолитических ферментов (трипсина и других).

 

Отщепившийся в желудочно-кишечном тракте белок подвергается обыч-ным для белка превращениям. Расщепление же нуклеиновых кислот происхо-дит далее под влиянием особых ферментов поджелудочной железы и тонкого кишечника – специфических нуклеаз и неспецифических фосфодиэстераз. Они ускоряют реакции разрыва межнуклеотидных связей в молекулах нуклеино-вых кислот. Нуклеазы, действующие на внутренние межнуклеотидные связи в молекулах РНК и ДНК, называются эндонуклеазами. При их участии осущест-вляется деполимеризация нуклеиновых кислот в основном до олигонуклеоти-дов. Нуклеазы, ускоряющие реакции последовательного отщепления нуклео-тидов от РНК и ДНК,начиная с конца полинуклеотидной цепи,называются экзонуклеазами. Эти ферменты обеспечивают распад нуклеиновых кислот до отдельных мононуклеотидов. При этом различают эндо- и экзорибонуклеазы и эндо- и экзо-дезоксирибонуклеазы. Первые ускоряют реакции распада внут-ренних и внешних(концевых) межнуклеотидных связей в молекулах РНК. Вторые выполняют ту же роль в молекулах ДНК.

 

Существует также группа неспецифических эндо-и экзонуклеаз, дейст-вующих одновременно на РНК и ДНК.

 

Большинство нуклеаз являются гидролазами, однако, часть из них при-надлежит к группе фосфотрансфераз (например, эндонуклеаза поджелудочной железы). В результате каталитического влияния разнообразных нуклеаз в по-лости пищеварительного тракта нуклеиновые кислоты распадаются на слож-ную смесь индивидуальных мононуклеотидов.

Образовавшиеся мононуклеотиды гидролизуются малоспецифическими и высокоспецифическими фосфатазами с образованием нуклеозидов и неорга-нического фосфата. В виде этих соединений(нуклеотидов и нуклеозидов) и происходит всасывание продуктов гидролиза нуклеиновых кислот.Всосав-шиеся нуклеотиды и нуклеозиды частично используются в организме для син-теза простетических групп нуклеопротеидов.

Пиримидиновые основания претерпевают последующие из-менения и превращаются в те или иные простейшие азотсодержащие продук-ты, которые либо выводятся из организма, либо откладываются в нем. Первая фаза распада пиримидиновых оснований заключается в дезами-нировании под влиянием специфических аминогидролаз тех из них,которые имеют аминогруппу.

В отличие от пуриновых оснований дезаминированные пиримидиновые основания подвергаются восстановлению. В частности, урацил переходит в

дигидроурацил. Донором атомов водорода служит НАД.Н.Далее дигидро-

урацил гидролизуется в N-карбамил-β-аланин, который гидролизуется в свою очередь до β-аланина и карбаминовой кислоты. Последняя либо используется для синтеза мочевины, либо распадается до углекислого газа и аммиака.Все эти реакции катализируются соответствующими ферментами:

59. Синтез ДНК (репликация) характеризуется рядом особенностей.

При биосинтезе ДНК первой характерной чертой специфического -био синтеза является то, что он протекает только при участии всех четырех видов дезоксирибонуклеозид-5’-трифосфатов (дАТФ, дГТФ, дЦТФ, дТТФ). Вторая особенность состоит в том, что биосинтез ДНК идет при каталитическом воз-действии комплекса ферментов: ДНК-репликазной системы или реплисемы, включающей более 20 т.н. репликативных ферментов и белковых факторов, в том числе ДНК-полимеразыI, II и III, РНК-полимеразы, ДНК-лигазы, ДНК-связывающего, ДНК-закручивающего и ДНК-раскручивающего белка и др. Наконец, третьей чертой биосинтеза ДНК является необходимость для его осуществления «затравки» в виде олигорибонуклеотида и ДНК-матрицы, что обеспечивает специфический биосинтез нуклеиновых кислот со строго задан-ной последовательностью нуклеотидных остатков в синтезируемой молекуле

по механизму комплементарности азотистых оснований дочерней ДНК и ДНК-матрицы. Общая схема биосинтеза ДНК может быть представлена,со-гласно Корнбергу, в следующем виде:

формула

Сталь и Меселсон установили, что в организме репликация ДНК осущест-вляется по полуконсервативному механизму, при котором цепи родительской ДНК расходятся и на каждой из них образуются комплементарные цепи до-черней ДНК. Механизм ферментативной реакции, происходящей при биосин-тезе ДНК, сводится к наращиванию полинуклеотидных фрагментов,закреп-ленных на одноцепочной ДНК-матрице, за счет переноса на их свободную гидроксильную группу при 3’-углеродном атоме пентозы нуклеозидмонофос-фатного остатка с дезоксирибонуклеозидтрифосфата, закрепленного в сосед-нем положении на матричной одноцепочной ДНК в соответствии с принципом комплементарности. Перенос идет в направлении5’  3’ и сопровождается выделением пирофосфата, что обеспечивает синтез энергией.

 

Детали синтеза пока не ясны. Считается, что биосинтез ДНК начинается с раскручивания биспиральной цепи ДНК с образованием т.. нрепликативных вилок, двух репликативных вилок в фиксированной точке родительской ДНК под влиянием ДНК-раскручивающего белка у прокариот или сразу множества репликативных вилок у эукариот. Инициация синтеза дочерней ДНК предва-рительно требует синтеза на одной из одноцепочечных цепей(т.н. ведущей цепи) необычного затравочного олигорибонуклеотида (т.н. праймера – затрав-

ки) со свободной ОН-группой 3’у-углеродного атома рибозы. С этой  
ОН-группы праймера начинается затем истинный синтез дочерней ДНК по
принципу комплементарности азотистых оснований под влиянием
           

ДНК-полимеразы III в направлении 5’  З’, обратному направлению исходной цепи ДНК. На второй цепи ДНК-матрицы(т.н. отстающей цепи) также идет синтез ДНК, но в виде фрагментов(т.н. фрагментов Оказаки) в направлении 5’  3’. В последующем фрагменты ДНК объединяются при участии ДНК-лигаз в единую полинуклеотидную цепь. Праймер разрушается рибонуклеазой Н с последующей заменой на фрагмент ДНК с помощью ДНК-полимеразы I.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 243; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.163.58 (0.009 с.)