Основные схемы использования водной энергии 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные схемы использования водной энергии



Имеются три основные схемы создания сосредоточенного напора ГЭС: 1) плотинная схема, когда напор создается плотиной; 2) де­ривационная схема, когда напор создается преимущественно по­средством деривации, осуществляемой в виде канала, туннеля или трубопровода; 3) плотинно-деривационная схема, когда на­пор создается и плотиной, и деривацией. Плотины имеются во всех трех схемах.

 

А. ПЛОТИННАЯ СХЕМА

Плотинная схема (рис. 2-3) осуществляется преимущественно при больших расходах воды в реке и малых уклонах ее свободной поверх­ности. Посредством плотины, построенной в пункте В, создается подпор воды, который распространяется вверх по реке до пункта А. Раз­ность уровней воды в пунктах А и В равна Ho + Δh. Часть общего па­дения Δh будет потеряна при движении воды в верхнем бьефе. Сосре­доточенный перепад уровней, т. е. напор будет равен Н0. В плотинной схеме в зависимости от напора ГЭС может быть русловой или приплотинной.

Русловой называется такая ГЭС, у которой здание ГЭС наряду с плотиной входит в состав сооружений, создающий напор (рис 2-4).

Здание русловой ГЭС воспринимает полное давление воды со стороны ВБ и должно удовлетворять условию устойчивости, как и плотина. Русловая ГЭС может быть построена при сравнительно небольшом напоре.

При средних и больших напорах, превышающий диаметр трубы более чем в 4-5 раз, здание ГЭС не может входить в состав напорного фронта. В таких случаях строят приплотинную ГЭС, здание которой располагается за плотиной и не воспринимает плотного давления воды (рис 2-5). Подвод воды к турбинам такой ГЭС осуществляется трубопроводами, размещенными в теле или поверх бетонной плотины, под земляной плотиной или туннелями, прокладываемыми в обход плотины.

 

Б. ДЕРИВАЦИОННАЯ СХЕМА

При деривационной схеме высота плотины может быть небольшой, обеспечивающей лишь отвод воды из реки в деривацию, а сосредоточенный напор получается за счет разности уклонов воды в реке и в деривации. На рис 2-6 приведена схема ГЭС с деревацией в виде открытого канала. Плотина создает небольшой подпор. Из подпертого бьефа вода по деревационному каналу поступает в напорный бассейн, откуда она подается по трубопроводам к турбинам ГЭС. От турбин вода по отводящему каналу направляется в реку или деревацию следующей ГЭС или же в ирригационный оросительный канал.

При пересеченном или горном рельефе местности, деревацию можно выполнить в виде туннеля, прорезывающий горный массив (рис 2-7), или в виде трубопровода, уложенного по поверхности земли. Деревация может состоять частично из канала и туннеля, из трубопровода и туннеля и т. п.

Существуют два типа гидротехнических туннелей: безнапорные, заполненные водой не полностью, с атмосферным давлением над свободной поверхностью воды, и напорные, в которых вода заполняет все сечение туннеля. В напорном туннеле гидродинамическое давление даже в самой верхней точке сечения выше атмосферного. В конце длинного подводящего напорного туннеля устраивается уравнительный резервуар для уменьшения гидравлического удара при резких изменениях расхода воды, потребляемой ГЭС (рис 2-7). В конце подводящего безнапорного туннеля как и в конце деривационного канала сооружается напорный бассейн (рис 2-6).

При длинной безнапорной подводящей деривации (канал, безнапорный туннель) в конце ее иногда устанавливается бассейн суточного регулирования расхода и мощности ГЭС (рис 2-6).

Если река несет большое количество крупных наносов (песок), попадание которых в деривацию может вызвать нежелательные последствия, то в начале подходящей деривации сооружается отстойник. Наносы, выпавшие в отстойнике, смываются в реку через промывной канал.

Если возможно переохлаждение воды и образование внутриводного льда – шуги, то в случае надобности на головном узле, на деривационном канале или на напорном бассейне сооружают шугосбросы. Деривация может быть отводящей. При большой длине отводящая деривация часто выполняется в виде туннеля, когда ГЭС является подземной.

Деривационные схемы установок выгодны в горных условиях, при больных уклонах свободной поверхности возы в реке и сравнительно малых используемых расходах, когда при относительно небольшой длине и малых поперечных размерах деривации можно получить большой напор и большую мощность ГЭС. При благоприятных геологических и топографических условиях на горной реке может быть приме­нена и плотинная схема. Посредством плотины можно создать водо­хранилище для регулирования стока реки.

В ПЛОТИННО-ДЕРИВАЦИОННАЯ СХЕМА

В плотинно - деривационной схеме используются выгодные свойства обеих предыдущих схем, т. е. может быть создано водохранилище и использовано падение реки ниже плотины (рис. 2-8) На используемом участке реки А—В при неиз­менной отметке верхнего бьефа ▼ ВБ местоположение плотины мо­жет быть различным. Чем выше по течению расположена плотина, тем меньше ее высота. При этом умень­шается размер водохранилища, т. е. уменьшается затапливаемая терри­тория, но увеличивается длина де­ривации и увеличиваются потери напора hA-B. Тщательное технико-экономическое сравнение вариантов позволяет выбрать наилучший.

Г. КАСКАДЫ ГИДРОЭЛЕКТРОСТАНЦИЙ И ВОДОХРАНИЛИЩ

Несколько ГЭС, последователь­но расположенных на одном водо­токе, образуют каскад. Проектирование и осуществление каскадов ГЭС имеет целью возможно более полное использование падения реки и ее стока в интересах всего народного хозяйства. При этом стремятся за счет создания водохранилищ наилучшим образом зарегулировать сток рек.

Местоположение каждого гидроузла, его напор, объем образуемо­го им водохранилища и т. п. выбираются на основе тщательного изу­чения природных условий и всестороннего технико-экономического анализа. Для того чтобы использовать возможно больший сток на дан­ной установке, створ плотины стремятся расположить ниже крупного притока, а для уменьшения ущерба от затопления створ плотины выбирают выше крупных городов. При выборе створа плотины часто решающее значение имеют топографические и геологические ус­ловия

При сооружении каскада ГЭС обычно оказывается целесообраз­ным некоторый подпор вышерасположенной ступени, благодаря чему падение реки используется более полно и может производиться глубо­кое суточное регулирование мощности ГЭС без существенных колеба­ний уровня НБ.

На рис. 2-9 приведена схема Волжско-Камского каскада ГЭС и водохранилищ. Река Волга имеет длину 3690 км и общее падение 250 м. Ступенчатой линией показаны проектные уровни воды после осуществления всей схемы реконструкции Волги.

Каскады ГЭС построены и строятся в СССР на многих реках — Енисее, Ангаре, Иртыше, Каме, Свири, Вуоксе, Днепре, Сырдарье, Нарыне, Чирчике, Куре, Риони, Ингури, Сулаке и др.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 187; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.151.141 (0.005 с.)