Оплодотворение, фазы оплодотворения, биологическое значение оплодотворения и поведение хромосом в процессе оплодотворения. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Оплодотворение, фазы оплодотворения, биологическое значение оплодотворения и поведение хромосом в процессе оплодотворения.



 

1.1. Оплодотворение.

Половой процесс — процесс слияния гаплоидных половых клеток, или гамет, приводящий к образованию диплоидной клетки зиготы. Не следует смешивать это понятие с половым актом (встречей половых партнёров у многоклеточных животных).

Половой процесс закономерно встречается в жизненном цикле всех организмов, у которых отмечен мейоз. Мейоз приводит к уменьшению числа хромосом в два раза (переход от диплоидного состояния к гаплоидному), половой процесс — к восстановлению числа хромосом (переход от гаплоидного состояния к диплоидному).

Различают несколько форм полового процесса:

изогамия — гаметы не отличаются друг от друга по размерам, подвижны, жгутиковые или амебоидные;

анизогамия — гаметы отличаются друг от друга по размерам, но оба типа гамет (макрогаметы и микрогаметы) подвижны и имеют жгутики;

оогамия — одна из гамет (яйцеклетка) значительно крупнее другой, неподвижна, деления мейоза, приводящие к её образованию, резко асимметричны (вместо четырёх клеток формируется одна яйцеклетка и два абортивных «полярных тельца»); другая (спермий, или сперматозоид) подвижна, обычно жгутиковая или амебоидная.

Зрелая яйцеклетка может быть оплодотворена на протяжении небольшого отрезка времени(12-24 часа после овуляции у человека, у рыб и амфибий - через несколько минут после откладки). После овуляции яйцеклетка претерпевает серьезные клеточные изменения. Для оплодотворения очень важен срок жизни. Совокупность изменений яйцеклетки после овуляции – старение яйцеклетки, через 24 часа – перезрелая яйцеклетка – оплодотворение невозможно. Если происходит оплодотворение в данном случае, то невозможна имплантация. Возможны аборты. Ежемесячно созревает только 1 яйцеклетка.

Жизнеспособность сперматозоидов зависит от многих факторов. В щелочной среде они активны, но быстро погибают в кислой среде. Путь от влагалища до 2/3 яйцевода составляет 2-3 часа. В верхней трети влагалища происходит подщелачивание среды (т. к. кислотность высокая) из-за семенной жидкости. В матку проникают только сперматозоиды. Они сохраняют большую подвижность при пониженной температуре. Сперма собирается и замораживается в жидком азоте. Жидко кристаллическая цитоплазма не позволяет образовываться большим кристаллам льда (использование в племенном деле, банки спермы людей).

В процессе оплодотворения выделяют 3 этапа.

1) активация яйцеклетки

2) проникновение сперматозоида в яйцеклетку

3) слияние ядер.

В ходе оплодотворения сперматозоид преодолевает все оболочки яйцеклетки. Как только происходит контакт сперматозоида с яйцеклеткой – завершается мейоз яйцеклетки, в т.ч. она выделяет фертилизин. Сперматозоид выделяет антифертилизин – происходит приклеивание. В это время акрозин разрушает оболочки, выделяются ферменты. У человека сперматозоид проникает по-разному: либо только головка, либо шейка и головка. После контакта сперматозоида и яйцеклетки у моноспермных в течение 1-3 минут происходит кортикальная реакция – образуется оболочка оплодотворения. Если несколько сперматозоидов – гибель клетки. Ядро сперматозоида набухает, разрыхляется, образуется мужской пронуклеус. Ядро яйцеклетки превращается в женский пронуклеус. Идет репликация ДНК. Пронуклеусы идут к центру, ядерные оболочки исчезают, происходит слияние пронуклеусов (кариогамия), образуется зигота(2n4c). Через сутки начинается дробление. Возможно развитие эмбриона без участия мужской гаметы (механическое, тепловое, химическое воздействие) – партеногенез. Гиногенез – развитие из яйцеклетки. При гиногенезе сперматозоид проникает и погибает (только женские организмы, т.к. только женский геном). Андрогенез – развитие из сперматозоида. При нем ядро яйцеклетки погибает (только мужской геном). Очень быстро такой геном перерождается в злокачественную опухоль хорионэпителиому.

 

Партеногенез.

 

Партеногенез — девственное размножение, одна из форм полового размножения организмов, при которой женские половые клетки (яйцеклетки) развиваются без оплодотворения. Партеногенез — половое, но однополое размножение — возник в процессе эволюции организмов у раздельнополых форм. В тех случаях, когда партеногенетические виды представлены (всегда или периодически) только самками, одно из главных биологических преимуществ партеногенеза заключается в ускорении темпа размножения вида, так как все особи подобных видов способны оставить потомство. В тех случаях, когда из оплодотворённых яйцеклеток развиваются самки, а из неоплодотворённых — самцы, партеногенез способствует регулированию численных соотношений полов (например, у пчёл). Часто партеногенетические виды и расы являются полиплоидными и возникают в результате отдалённой гибридизации, обнаруживая в связи с этим гетерозис и высокую жизнеспособность. Партеногенез следует относить к половому размножению и следует отличать от бесполого размножения, которое осуществляется всегда при помощи соматических органов и клеток (размножение делением, почкованием и т. п.).

 

Существует несколько классификаций партеногенетического размножения.

1)Естественный — нормальный способ размножения некоторых организмов в природе.

Искусственный — вызывается экспериментально действием разных раздражителей на неоплодотворённую яйцеклетку, в норме нуждающуюся в оплодотворении.

2)Рудиментарный (зачаточный) — неоплодотворённые яйцеклетки начинают деление, однако зародышевое развитие прекращается на ранних стадиях. Вместе с тем в некоторых случаях возможно и продолжение развития до конечных стадий (акцидентальный или случайный партеногенез).

Полный — развитие яйцеклетки приводит к формированию взрослой особи. Эта разновидность партеногенеза наблюдается во всех типах беспозвоночных и у некоторых позвоночных.

3)Амейотический — развивающиеся яйцеклетки не проделывают мейоза и остаются диплоидными. Такой партеногенез (например, у дафний) является разновидностью клонального размножения.

Мейотический — яйцеклетки проделывают мейоз (при этом они становятся гаплоидными). Новый организм развивается из гаплоидной яйцеклетки (самцы перепончатокрылых насекомых и коловраток), или яйцеклетка тем или иным способом восстанавливает диплоидность (например, путём эндомитоза или слияния с полярным тельцем)

4)Облигатный — когда он является единственным способом размножения

Циклический — партеногенез закономерно чередуется с другими способами разножения в жизненном цикле (напрмер, у дафний и коловраток).

Факультативный — встречающийся в виде исключения или запасного способа размножения у форм, в норме двуполых.

5)Гиногенез

Андрогенез

 

1.2. Типы определения пола.

- прогамный. Пол будущего организма определяется в ходе гаметогенеза у родительских особей.

- сингамный. Пол будущего организма определяется в момент слияния половых клеток.

- эпигамный. Пол будущего организма определяется в процессе онтогенеза. У человека имеет место переопределение пола (при патологии) – хотя истиного нет.

 

 

Терминология

 

Ген - структурная и функциональная единица наследственности, контролирующая развитие определенного признака или свойств.

Ген — материальный носитель наследственной информации, совокупность которых родители передают потомкам во время размножения. В настоящее время, в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют рост и функционирование организма.

 

Генотимп — совокупность генов данного организма, который характеризует особь, а не вид. (еще отличием генотипа от генома является включение в понятие "геном" некодирующих последовательностей, не входящих в понятие "генотип")

 

Фенотимп — (от греческого слова phaino — являю, обнаруживаю) совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешнесредовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.

Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуальное развитие)

 

Аллели (аллеломорфы) (от греч. ἀллЮлщн — друг друга, взаимно) — различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных (парных) хромосом; определяют варианты проявления одного и того же признака. В диплоидном организме может быть два одинаковых аллеля одного гена, в этом случае организм называется гомозиготным, или два разных, что приводит к гетерозиготному организму.

Аллельные гены — это варианты данного гена, несколько отличающиеся последовательностью нуклеотидов, отвечающие за развитие одного и того же признака и расположенные в одинаковых локусах гомологичных хромосом.

 

Признак — это единица морфологической, физиологической и биохимической дискретности организмов, позволяющая отличать его от других организмов.

 

Доминантный признак — признак, проявляющийся у гибридов первого поколения при скрещивании чистых линий. Результат наличия доминантного аллеля. Обычно «дикий тип», то есть вариант, присущий большинству особей природных популяций — это доминантный признак. Например, чёрная окраска перьев у грачей — доминатный признак, а редко встречающаяся белая окраска, вызванная неспособностью синтезировать пигмент — рецессивный. Доминантные признаки могут быть обусловлены генами, расположенными в неполовых (аутосомах) хромосомах или в половых хромосомах (признаки, сцепленные с полом). В первом случае признак называется доминантно-аутосомным.

 

Гомозигомта (от греч. «гомо» — равный, «зигота» — оплодотворенная яйцеклетка) — диплоидный организм (или клетка), несущий идентичные аллели в гомологичных хромосомах.

 

Гетерозиготными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных хромосомах представлены разными аллелями. Когда говорят, что данный организм гетерозиготен (или гетерозиготен по гену X), это означает, что копии генов (или данного гена) в каждой из гомологичных хромосом несколько отличаются друг от друга.

 

Законы Менделя — набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона, хотя «первый закон» не был открыт Менделем, а «гипотеза чистоты гамет» из всех открытых им закономерностей имеет наиболее общее значение и в наибольшей степени заслуживает названия «закона».

Закон единообразия гибридов первого поколения

Схема первого и второго закона Менделя. 1) Растение с белыми цветками (две копии рецессивного аллеля w) скрещивается с растением с красными цветками (две копии доминантного аллеля R). 2) У всех растений-потомков цветы красные и одинаковый генотип Rw. 3) При самооплодотворении у 3/4 растений второго поколения цветки красные (генотипы RR + 2Rw) и у 1/4 — белые (ww).

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с желтыми и зелеными семенами, у всех потомков семена были желтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

 

Закон расщепления признаков

Определение

Закон расщепления, или второй закон Менделя.

Скрещивание организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание. Закон расщепления: при моногибридном скрещивании во втором поколении гибридов наблюдается расщепление по фенотипу в соотношении 3:1: около 3/4 гибридов второго поколения имеют доминантный признак, около 1/4 — рецессивный.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определенном числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении

Закон чистоты гамет: в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

 

Закон независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) — каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9/16 были с пурпурными цветами и желтыми горошинами, 3/16 с белыми цветами и желтыми горошинами, 3/16 с пурпурными цветами и зелёными горошинами, 1/16 с белыми цветами и зелёными горошинами.

 

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы — гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)

Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один

из них получен от отца, другой — от матери.

Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 252; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.0.53 (0.025 с.)