Все биологические свойства белковой молекулы связаны с сохранностью их тс, которая называется нативной конфигурацией белка. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Все биологические свойства белковой молекулы связаны с сохранностью их тс, которая называется нативной конфигурацией белка.



Глобулярная молекула (глобула) не является абсолютно жесткой структурой. Небольшие изменения конфигурации белковых молекул происходят как внутри самой молекулы (как бы пульсация), так и при взаимодействии с другими молекулами и напоминает изменение формы резинового мяча при надавливании.

Денатурация и ренативация белка

 

При разрыве большого числа связей, стабилизирующих белковую молекулу, уникальная для каждого белка конформация нарушается. Такое изменение называется денатурацией. Ее можно вызвать при нагревании белка до 60-80oС и действии других агентов – детергентов, то есть щелочей, кислот, мочевины, спиртов и т.д. При денатурации растворимость белков ухудшается. Часто белок сворачивается. При денатурации утрачивается биологическая активность белков. В определенных условиях (медленное охлаждение денатурированного нагреванием белка, промывание раствора белка и вымывание из него детергентов) возможна ренативация (ренатурация), то есть восстановление исходной нативной конформации белка.

Четвертичная структура белка(ЧСБ).


Многие белки построены из 2 и более ППЦ, например гексокиназа содержит 2 ППЦ, HbA – 4 ППЦ, ферритин – 24.
Цепи соединяются между собой нековалентными связями. Например, основной белок эритроцитов Hb состоит из 4-х цепей: 2α и 2β. При сравнительно небольших изменениях окружающей среды Hb может диссоциировать на димеры, затем на мономеры (или протомеры).

 

Димеры и протомеры называются субъединицами. Протомеры – это наименьшие субъединицы. Белки, молекулы которых построены из нескольких ППЦ, называются олигомерами или олигобелками.

Количество протомеров, способ их соединения и пространственной укладки относительно друг друга называются ЧСБ.

Белки с Mr больше 50 тыс. Да почти всегда являются олигомерными. ЧСБ является такой специфической уникальной характеристикой данного белка, как и другие уровни структурной организации. При соединении друг с другом протомеры взаимодействуют не любой поверхностью, а определенным участком – контактной поверхностью. Если на одной ППЦ (субъединице) имеется выступ, то на другой в соответственном месте имеется углубление. При этом совпадают разноименно заряженные ионные группы, группы, образованные водородной связью, гидрофобные и гидрофильные участки. Такие участки называются комплементарными. Они подходят друг к другу как ключ к замку. Процесс самосборки олигомерных белков отличается высокой специфичностью. Например, если в растворе наряду с протомерами Hb есть и другие белки, они не образуют соединений с Hb. Чаще всего отдельные субъединицы не обладают биологической активностью, белки приобретают эту способность при соединении протомеров в олигомер.

Классификация белков

До сих пор не существует единой, строго научной классификации белков, с помощью которой можно было бы их систематизировать. Поэтому используется несколько разных классификаций.

По составу белки делят на:

· Простые – белки, состоящие только из аминокислот и при гидролизе распадающиеся соответственно только на аминокислоты. По характеру растворимости эти белки можно разделить на следующие группы:

1. Альбумины – белки, растворимые в воде. Альбумины легко высаливаются из водных растворов с помощью солей. Они широко распространены в органах и тканях животных и растений.

2. Глобулины – нерастворимы в чистой воде, но растворяются в слабых водных растворах различных солей. Обычно в качестве растворителя используют 10%-ный NaС1 или КCl. Глобулины встречаются как в животных, так и в растениях, однако особенно много их в белках семян бобовых.

3. Глютелины – белки растительного происхождения, растворимые в растворах щелочей, так как содержат большое количество дикарбоновых аминокислот (глутамат, аспартат). Глютелины содержатся в семенах злаков, у которых они (совместно с проламинами) составляют основную массу клейковины, а также в зеленых частях растений.

4. Проламины – белки растительного происхождения, растворимые в 50-70%-ном растворе этилового спирта. Содержат 20-25% глутамата и 10-15% пролина (отсюда название). Проламины встречаются исключительно в семенах злаков, у которых они (совместно с глютелинами) составляют основную массу клейковины.

· Сложные – кроме белковой части, содержат небелковую группу.

1. Липопротеины (в своем составе содержат липиды).

2. Металлопротеины (содержат металлы, к примеру, многие ферменты).

3. Нуклеопротеины (содержат нуклеотиды).

4. Гликопротеины (содержат углеводы).

Липо- и гликопротеиды входят в состав мембран клеток.

По конформации белки делят на:

1. Фибриллярные – состоят из параллельно расположенных полипептидных цепей, которые образуют волокна–фибриллы. Очень прочные, нерастворимые в воде. Выполняют структурную функцию (соединение тканей животных). Примеры: коллаген (кости), α-кератины (волосы, ногти).

2. Глобулярные – имеют форму глобулы, растворимы в воде. Выполняют динамическую функцию (движение веществ). Примеры- ферменты, гормоны, антитела, транспортные белки.

3. Промежуточные белки – имеют форму фибриллы, но растворимы в воде. К примеру, миозин, фибриноген.

По количеству полипептидных цепей белки делят на:

1. Мономерные (состоят из одной полипептидной цепи).

2. Олигомерные (состоят из нескольких полипептидных цепей).

По пищевой ценности белки делят на:

1. Сбалансированные (полноценные); содержат все незаменимые кислоты в нужных человеку пропорциях. К ним относятся белки животного происхождения (мясо, рыба, молоко).

2. Несбалансированные; незаменимые аминокислоты отсутствуют, либо их очень мало. К ним относятся белки растительного происхождения (за исключением сои, амаранта).

По выполняемым функциям белки делят на:

1. Ферментативные (каталитически активные; только белки способны выполнять эту функцию).

2. Структурные (входят в состав клеточных мембран).

3. Строительные (например, коллаген, который входит в состав костного вещества; кератин, который входит в состав ногтей и волос).

4. Транспортные (транспортируют различные вещества, например, белок гемоглобин переносит кислород).

5. Защитные (например, такие белки, как антитела, обеспечивают защиту от инфекций).

6. Регуляторные (например, гормоны – регулируют обмен веществ).

7. Запасающие, или резервные (белки семян, яиц).

8. Сократительные (такие белки мышечных волокон как актин и миозин).

Кроме того, белки, а точнее, образующиеся при их гидролизе аминокислоты, при полном расщеплении способны давать некоторое количество энергии. Однако энергетическая функция не является основной для белков и аминокислот.

Основные свойства белков

Физико-химические и химические свойства белков отличаются исключительным разнообразием.

1. Кислотно-основные (амфотерные) свойства.Определяются главным образом ионизируемымиR-группами пептидной цепи. В зависимости от реакции растворителя белок будет диссоциировать либо как кислота (в щелочном растворе), либо как щелочь (в кислом растворе). Поэтому в щелочном растворе молекулы белка будут заряжены отрицательно, а в кислом – положительно. Для каждого белка характерно определенное значение рН, соответствующее изоэлектрической точке, при которой белок остается неподвижным в электрическом поле. При значениях рН, лежащих выше изоэлектрической точки, белок несет суммарный отрицательный заряд, а при значениях рН ниже изоэлектрической точки – суммарный положительный.

2. Растворимость белков в воде.Характерна для глобулярных белков, в то время как фибриллярные белки являются гидрофобными. Как правило, растворимость в воде минимальна в их изоэлектрической точке. Она повышается по мере уменьшения ионной силы раствора и понижается при увеличении концентрации нейтральных солей (высаливание). При изоэлектрической точке наблюдается также наименьшая вязкость белковых растворов и наиболее легкое осаждение белка из раствора.

3. Гидролиз пептидных связей. В живых клетках он осуществляется при участии протеолитических ферментов (протеаз).

4. Оптические свойства.Заключаются в способности вращать плоскость поляризации света, рассеивать световые лучи ввиду значительных размеров белковых частиц и поглощать ультрафиолетовые лучи (оптические свойства белков используют при их количественном определении, измерении молекулярной массы и т.д.).

5. Гидрофильность белков.Вследствие того, что при образовании пространственной структуры белков гидрофобные радикалы аминокислот прячутся внутрь молекулы, а полярные, как правило, оказываются на поверхности, белки при взаимодействии с водой окружаются гидратной оболочкой и набухают. Набухание зерна при замочке, кондиционировании и прорастании, набухание белков муки при изготовлении теста, образование студней при добавлении желатины к различным кондитерским изделиям – все эти процессы тесно связаны с набуханием белков.

6. Способность белковых растворов превращаться в коллоидные системы – гели. В гелях растворитель и белок образуют одну внешне гомогенную массу, подобную студню. Гели обладают рядом физических свойств, характерных для твердого вещества. Свойства геля зависят от наличия в нем как бы своеобразного скелета, состоящего из белковых молекул. В гелях имеется гидратационная вода, окружающая толстым слоем коллоидные частицы белка, а также вода, удерживаемая в капиллярных пространствах между ними.

7. Набухание геля – способность поглощать и удерживать большое количество воды (впитывание воды). Сопровождается увеличением его объема и сильным давлением. Набухание геля зависит от концентрации водородных ионов и от присутствия солей. Минимальное набухание наблюдается при изоэлектрической точке данного белка. Явление, обратное набуханию, - отделение воды от геля – называется синерезисом.

8. Денатурация – изменение уникальной структуры нативного белка, сопровождающееся потерей характерных для него свойств: растворимости, биологической активности, электрофоретической подвижности. Денатурация может вызываться повышением температуры, РН, механическим воздействием, излучением. Денатурация, как правило, затрагивает третичную и частично вторичную структуры белковой молекулы и не сопровождается какими-либо изменениями первичной структуры. При определенных условиях денатурированный белок можно частично или полностью вернуть к исходному состоянию. Такой белок называют ренатурированным. Денатурация белков имеет большое значение в явлениях жизни. Она сопровождается параллельно идущими изменениями гидрофильности белков и их способности к взаимодействию с другими веществами. Так, по мере старения организма происходит постепенная денатурация белков и снижение их гидрофильности. Пример подобной необратимой денатурации – это старение семян, которые, даже при наиболее благоприятных условиях хранения, через определенный срок теряют способность к прорастанию; при этом одновременно происходит уменьшение гидрофильности белков. Весьма важную роль играет процесс обратимой денатурации белков – переход глобулярных белков в фибриллярное состояние и обратные превращения. Возможно, что именно с подобными обратимыми превращениями белков, сопровождающимися изменениями их гидрофильности и реактивности, теснейшим образом связаны такие явления, как завядание растений, движение протоплазмы. Денатурация белков происходит в целом ряде процессов пищевой промышленности: при выпечке хлеба и кондитерских изделий, при сушке макарон, овощей, молока или яичного порошка, при изготовлении консервов.

9. Осаждаемость – способность белков осаждаться под действием солей, ионов тяжелых металлов и органических растворителей. Водная оболочка, имеющаяся вокруг белковой глобулы, способствует устойчивости белковых растворов и препятствует осаждению белка. Если отнять у белковых глобул связанные с ними молекулы воды (дегидратация) и уменьшить таким образом их гидратацию, то они начнут слипаться, образуя более крупные частицы белка, и в конце концов будут оседать из раствора. Каждый индивидуальный белок разделяемой смеси осаждается из нее при определенной концентрации той или иной соли, в то время как другие белки при данной концентрации соли остаются в растворе. Процесс осаждения белка из раствора под действием солей называется высаливанием.

10. Качественные (цветные) реакции. Обладая аминокислотными радикалами различной химической природы, белковые молекулы способны давать широкий круг реакций. При взаимодействии белка с отдельными химическими веществами возникают окрашенные продукты реакции, образование которых обусловлено наличием в молекуле белка той или иной аминокислоты или химической группировки. Поэтому так называемые цветные реакции на белки часто используют для установления белковой природы вещества, изучения аминокислотного состава различных природных белков, количественного определения белков, количественного определения в белке той или иной аминокислоты.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 155; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.181.231 (0.016 с.)