Аналогові інтерфейси МК: компаратор,АЦП, джерело опорної напруги. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Аналогові інтерфейси МК: компаратор,АЦП, джерело опорної напруги.



Компаратор (рос. компаратор, англ. comparator, нім. Komparator m) – це елемент порівняння, який широко використовується в системах контролю та автоматичного керування. Компаратори відносяться до елементів імпульсної техніки. [1] Компаратор, виконаний на базі операційного підсилювача (ОП), порівнює вимірювану напругу Uвх, яка подається на один із входів (переважно на інвертувальний), із опорною напругою (наперед заданою) Uоп, яка подана на інший вхід. Опорна напруга є незмінною в часі, додатно чи від'ємної полярності, а вхідна напруга — змінюється. Коли Uвх=Uоп вихідна напруга ОП змінює свій знак на протилежний (з U+вих.макс на U-вих.макс чи навпаки). Тому компаратор має ще назву «нуль-орган», оскільки зміна полярності вихідної напруги (перемикання) відбувається за умови, що uвх- Uоп=0, де Uоп — задана напруга.

Компарування (рос. компарирование, англ. comparation, comparison; нім. Vergleich, Komparierung, Gegenüberstellung f, Komparatung f) – порівняння величини робочогоприладу (довжини, частоти тощо) з еталонною величиною на компараторі і визначення поправок до показань приладу, який компарується.

Параметры компараторов

Параметры, характеризующие качество компараторов, можно разделить на три группы: точностные, динамические и эксплуатационные.

Компаратор характеризуется теми же точностными параметрами, что и ОУ.

Основным динамическим параметром компаратора является время переключения tп. Это промежуток времени от начала сравнения до момента, когда выходное напряжение компаратора достигает противоположного логического уровня. Время переключения замеряется при постоянном опорном напряжении, подаваемом на один из входов компаратора и скачке входного напряжения Uвх, подаваемого на другой вход. Это время зависит от величины превышения Uвхнад опорным напряжением. На рис. 8 приведены переходные характеристики компаратора mА710 для различных значений дифференциального входного напряжения Uд при общем скачке входного напряжения в 100 мВ. Время переключения компаратора tп можно разбить на две составляющие: время задержки tзи время нарастания до порога срабатывания логической схемы tн. В справочниках обычно приводится время переключения для значения дифференциального напряжения, равного 5 мВ после скачка.

 

АЦП, Ана́лого-цифрови́й перетво́рювач (англ. analog-to-digital converter (скорочено ADC)) — пристрій, що перетворює вхідний аналоговий сигнал в дискретний код (цифровий сигнал). Зворотне перетворення здійснюється за допомогою цифро-аналогового перетворювача (ЦАП).

Як правило, АЦП — електронний пристрій, що перетворює напругу в двійковий цифровий код. Проте, деякі неелектронні пристрої, такі як перетворювач кут-код, слід також відносити до АЦП.

Типи АЦП

Нижче перераховані основні способи побудови електронних АЦП:

АЦП прямого перетворення або паралельний АЦП містить по одному компаратору на кожен дискретний рівень вхідного сигналу. У будь-який момент часу тільки компаратори, відповідні рівням нижче за рівень вхідного сигналу, видадуть на своєму виході сигнал перевищення. Сигнали зі всіх компараторів поступають на логічну схему яка видає цифровий код, залежний від того, скільки компараторів показали перевищення. Паралельні АЦП дуже швидкі, але зазвичай мають розрядність не більше 8 бітів (256 компараторів), оскільки, мають велику і дорогу схему. АЦП цього типу мають дуже великий розмір кристала мікросхеми, високу вхідну ємність, і можуть видавати короткочасні помилки на виході. Часто використовуються для відео або інших високочастотних сигналів.

АЦП послідовного наближення або АЦП з порозрядним врівноваженням містить компаратор, допоміжний ЦАП і регістр послідовного наближення. АЦП перетворить аналоговий сигнал в цифровий за N кроків, де N — розрядність АЦП. На кожному кроці визначається по одному біту шуканого цифрового значення, починаючи від СЗР і закінчуючи МЗР. Послідовність дій за визначенням чергового біта полягає в наступному. На допоміжному ЦАП виставляється аналогове значення, утворене з бітів, вже визначених на попередніх кроках; битий, який повинен бути визначений на цьому кроці, виставляється в 1, більш молодші біти встановлені в 0. Отримане на допоміжному ЦАП значення порівнюється з вхідним аналоговим значенням. Якщо значення вхідного сигналу більше значення на допоміжному ЦАП, то визначуваний біт отримує значення 1, інакше 0. Таким чином, визначення підсумкового цифрового значення нагадує двійковий пошук. АЦП цього типу володіють одночасно високою швидкістю і хорошою розрядністю.

АЦП диференціального кодування (англ. delta-encoded ADC) містять реверсивний лічильник, код з якого поступає на допоміжний ЦАП. Вхідний сигнал і сигнал з допоміжного ЦАП порівнюються на компараторі. Завдяки негативному зворотному зв'язку з компаратора на лічильник код на лічильнику постійно міняється так, щоб сигнал з допоміжного ЦАП якомога менше відрізнявся від вхідного сигналу. Після деякого часу різниця сигналів стає менше, ніж МЗР, при цьому код лічильника прочитується як вихідний цифровий сигнал АЦП. АЦП цього типу мають дуже великий діапазон вхідного сигналу і високу розрядність, але час перетворення залежить від вхідного сигналу, хоч і обмежено зверху. У гіршому разі час перетворення рівний Tmax=(2q) /fс, де q — розрядність АЦП, fс — частота тактового генератора лічильника. АЦП диференціального кодування зазвичай є хорошим вибором для оцифровки сигналів реального світу, оскільки більшість сигналів у фізичних системах не схильні до стрибкподібних змін. У деяких АЦП використовується комбінований підхід: диференційне кодування і послідовне наближення; це особливо добре працює у випадках, коли відомо, що високочастотні компоненти в сигналі відносно невеликі.

АЦП порівняння з зубчастим сигналом містять генератор напруги зубчастої форми, компаратор і лічильник часу. Зубчастий сигнал лінійно наростає до деякого рівня, потім швидко спадає до нуля. У момент початку наростання запускається лічильник часу. Коли пилоподібний сигнал досягає рівня вхідного сигналу, компаратор спрацьовує і зупиняє лічильник; значення прочитується з лічильника і подається на вихід АЦП. Цей тип АЦП є найпростішим за структурою і містить мінімальне число елементів. Разом з тим прості АЦП цього типу володіють досить низькою точністю і чутливі до температури і інших зовнішніх параметрів. Для збільшення точності генератор пилоподібного сигналу може бути побудований на основі лічильника і допоміжного ЦАП, проте така структура не має жодних переваг в порівнянні з АЦП послідовного наближення і АЦП диференціального кодування.

АЦП з урівноваженням заряду (до них відносяться АЦП з двостадійною інтеграцією, АЦП з багатостадійною інтеграцією і деякі інші) містять генератор стабільного струму, компаратор, інтегратор струму, тактовий генератор і лічильник. Перетворення відбувається в два етапи (двостадійне інтегрування). На першому етапі значення вхідного сигналу перетвориться в струм, який подається на інтегратор струму (заряд інтегратора спочатку рівний нулю); цей процес триває протягом часу TN, де T — період тактового генератора, N — константа (велике ціле число, визначає час накопичення заряду). Коли накопичення заряду закінчене, вхід інтегратора відключається від входу АЦП і підключається до генератора стабільного струму. Полярність генератора така, що він зменшує заряд, накопичений в інтеграторі. Процес розряду триває до тих пір, поки заряд в інтеграторі не зменшиться до нуля. Час розряду вимірюється шляхом рахунку тактових імпульсів від моменту початку розряду до досягнення нульового заряду на інтеграторі. Порахована кількість тактових імпульсів і буде вихідним кодом АЦП. Можна показати, що кількість імпульсів n, пораховане за час розряду, дорівнює: n = U вх N (RI0)−1, де U вх — вхідна напруга АЦП, N — число імпульсів, етапу накопичення (визначено вище), R — опір резистора, що перетворює вхідну напругу в струм, I0 — струм генератора стабільного струму. Таким чином, потенційно нестабільні параметри системи (перш за все, місткість конденсатора інтегратора) не входять в підсумковий вираз. Це є наслідком двостадійності процесу: похибки, введені на першому і другому етапах взаємно віднімаються. Не пред'являються жорсткі вимоги навіть до довготривалої стабільності тактового генератора і напрузі зсуву компаратора. Фактично, принцип двостадійної інтеграції дозволяє перетворити відношення двох аналогових величин (вхідного і зразкового струму) у відношення числових кодів (n і N в термінах, визначених вище) практично без внесення додаткових помилок. Типова розрядність АЦП цього типу становить від 10 до 18 двійкових розрядів. Додатковою гідністю є можливість побудови перетворювачів, нечутливих до періодичних перешкод (наприклад, перешкода від мережевого живлення) завдяки точній інтеграції вхідного сигналу за фіксований часовий інтервал. Недоліком даного типа АЦП є низька швидкість перетворення. АЦП з урівноваженням заряду використовуються у вимірювальних приладах високої точності.

Конвеєрні АЦП використовують два або більше кроків-піддіапазонів. На першому кроці проводиться грубе перетворення (з низькою розрядністю). Далі визначається різниця між вхідним сигналом і аналоговим сигналом, відповідним результату грубого перетворення (з допоміжного ЦАП, на який подається грубий код). На другому кроці знайдена різниця піддається перетворенню, і отриманий код об'єднується з грубим кодом для набуття повного вигідного цифрового значення. АЦП цього типу швидкі, мають високу розрядність і невеликий розмір корпусу.

Сигма-Дельта АЦП (звані також Дельта-Сигма АЦП) проводить аналого-цифрове перетворення з частотою дискретизації, що у багато разів перевищує потрібну і шляхом фільтрації залишає в сигналі тільки потрібну спектральну смугу.

Не електронні АЦП зазвичай будуються на тих же принципах.

застосування

Аналого-цифрове перетворення використовується скрізь, де потрібно обробляти, зберігати або передавати сигнал в цифровій формі. Швидкі відео АЦП використовуються, наприклад, в ТБ тюнерах. Повільні вбудовані 8, 10, 12, або 16 бітові АЦП часто входять до складу мікроконтролерів. Дуже швидкі АЦП необхідні у цифрових осцилографах


6 .Розробка МК пристрою керування силовим перетворювачем з аналоговим сигналом зворотнього зв’язку.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 282; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.61.246 (0.007 с.)