ТОП 10:

Черные дыры со звездной массой



Согласно нашим нынешним представлениям об эволюции звезд, когда звезда с массой, превышающей примерно 30 масс Солнца, гибнет со вспышкой сверхновой, внешняя ее оболочка разлетается, а внутренние слои стремительно обрушиваются к центру и образуют черную дыру на месте израсходовавшей запасы топлива звезды. Изолированную в межзвездном пространстве черную дыру

 

ДЖОН МИНЕЛЛ (John Michell, 1724-1793) — английский геолог, священник и теософ. О его жизни известно немногое. В 1760 году его избрали в Королевское общество за заслуги в исследовании причин катастрофического землетрясения, буквально стершего с лица земли Лиссабон в 1755 году. Ученый верно установил причину

Толчков — ударные

Волны, возникшие в результате подвижки геотектонических плит на дне Атлантического океана. В астрономии Мичелл установил, что большинство двойных звезд, представляющихся нам в телескопы отстоящими на мизерное расстояние друг от друга, реально являются парными звездными системами, связанным в единое тело силами взаимного тяготения, поскольку чистой случайностью такое их количество в небе объяснить невозможно. Однако самое невероятное «прозрение» Мичелла — предсказание того, что он сам называл «темными звездами», — которые, по его мнению, столь массивны, что даже свет не может преодолеть силу их притяжения. Примечательно и то, что сам Мичелл указал на то, что выявить их по отдельности невозможно, а в составе двойной звездной системы это вполне реально.

такого происхождения выявить практически невозможно, поскольку она находится в разреженном вакууме и никак не проявляет себя в плане гравитационных взаимодействий. Однако, если такая дыра входила в состав двойной звездной системы (две горячие звезды, обращающиеся по орбите вокруг их центра масс), черная дыра будет по-прежнему оказывать гравитационное воздействие на парную ей звезду. Астрономы сегодня имеют более десятка кандидатов на роль звездных систем такого рода, хотя строгих доказательств не получено в отношении ни одной из них.

В двойной системе с черной дырой в ее составе вещество «живой» звезды будет неизбежно «перетекать» в направлении черной дыры. И закручиваться высасываемое черной дырой вещество при падении в черную дыру будет по спирали, исчезая при пересечении радиуса Шварцшильда. При подходе к роковой границе, однако, засасываемое в воронку черной дыры вещество будет неизбежно уплотняться и разогреваться в силу учащения соударений между поглощаемыми дырой частицами, пока не разогреется до энергий излучения волн в рентгеновском диапазоне спектра электромагнитного излучения. Астрономы могут измерить периодичность изменения интенсивности рентгеновского излучения такого рода и вычислить, сопоставив ее с другими доступными данными, примерную массу объекта, «перетягивающего» на себя материю. Если масса объекта превышает предел чандрасекара (1,4 массы Солнца), этот объект не может являться белым карликом, в которого суждено выродиться нашему светилу. В большинстве выявленных случаев наблюдения подобных двойных рентгеновских звезд массивным объектом является нейтронная звезда. Однако насчитано уже более десятка случаев, когда единственным разумным объяснением является присутствие в двойной звездной системе черной дыры.

Все другие типы черных дыр куда более спекулятивны и основаны исключительно на теоретических изысканиях — экспериментальных подтверждений их существования не имеется вовсе. Во-первых, это черные мини-дыры с массой, сопоставимой с массой горы и сжатой до радиуса протона. Идею об их зарождении на начальной стадии формирования Вселенной непосредственно после большого взрыва высказал английский космолог Стивен Хокинг (см. скрытый принцип необратимости времени). Хокинг предположил, что взрывами мини-дыр можно объяснить действительно загадочный феномен точечных вспышек гамма-излучения во Вселенной. Во-вторых, некоторые теории элементарных частиц предсказывают существование во Вселенной — на микроуровне — настоящего решета из черных дыр, представляющих собой своего рода пену из отбросов мироздания. Диаметр таких микродыр предположительно составляет около 10-33 см — они в миллиарды раз мельче протона. На данный момент у нас нет каких-либо надежд на экспериментальную проверку даже самого факта существования таких черных дыр-частиц, не говоря уже о том, чтобы хоть как-то исследовать их свойства.

Числа Фибоначчи

Последовательность чисел, каждый член которой равен сумме двух предыдущих, имеет множество любопытных свойств


1202 • ЧИСЛА ФИБОНАЧЧИ

Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, который сегодня носит его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге Liber abacci, написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

Иными словами, число пар кроликов создает ряд, каждый член в котором — сумма двух предыдущих. Он известен как ряд Фибоначчи, а сами числа — числа Фибоначчи. Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффициент пропорциональности, приблизительно равный 1,618, известен как золотое сечение. В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них фил-лотаксис (листорасположение) — правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае?

34 и 55.

 

ФИБОНАЧЧИ (Леонардо из Пизы) Fibonacci (Leonardo of Pisa, ок. 1175-1250) — итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребность установить деловые контакты. Он издавал свои книги по арифметике,

алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Число Рейнольдса

Характер потока жидкости или газа — ламинарный или турбулентный — определяется безразмерным числом, зависящим от скорости потока, вязкости и плотности жидкости и характерной длины элемента потока

 

ЧИСЛО РЕЙНОЛЬДСА

Осборн Рейнольдс был в некотором смысле последним приверженцем старых добрых традиций классической механики Ньютона. В конце жизни он даже разработал тщательно продуманную механическую модель светоносного эфира (см. опыт майкельсона—морли), согласно которой эфир представлял собой систему мельчайших шарообразных частиц, свободно перекатывающихся друг относительно друга подобно дробинкам в мешке. До конца своих дней он считал, что «прогрессу механики нет конца... и то, что современники полагают ее пределом и тупиком... со временем окажется лишь новым поворотом на пути ее развития».

Чтобы понять всю важность главного открытия его жизни, нужно сначала немного рассказать о так называемых безразмерных величинах. Предположим, нам нужно измерить геометрические размеры комнаты. Допустим, мы взяли рулетку и определили, что длина комнаты равна 5 метрам. Однако, если мы возьмем рулетку, проградуированную в футах, окажется, что длина комнаты равна 15 с небольшим футов. То есть полученные нами при измерении цифры будут зависеть от используемых единиц, в то время как реальная длина комнаты остается постоянной.

Есть, однако, и такие характеристики геометрии комнаты, которые никак не зависят от единиц измерения. В частности, такой величиной является отношение длины комнаты к ее ширине — так называемое характеристическое соотношение. Если комната имеет длину 20 футов и ширину 10 футов, ее характеристическое соотношение равно 2. Измерив длину и ширину комнаты в метрах, мы получим, что размеры комнаты равны 6,096 м х 3,048 м, однако характеристическое соотношение останется прежним: 6,096 м : 3,048 м = 2. В данном случае 2 — безразмерная характеристика комнаты.

Теперь давайте обратимся к потоку жидкости. Различные жидкости при течении в трубах, растекании по поверхности или обтекании препятствий обладают различными свойствами. Густая, клейкая жидкость (например, мед) обладает, как говорят физики, большей вязкостью, нежели легкая и подвижная жидкость (например, бензин). Степень вязкости жидкости определяется так называемым коэффициентом вязкости, который принято обозначать греческой буквой ц («эта»). У густых, клейких жидкостей коэффициент вязкости ц в десятки и сотни раз выше, чем у легких и текучих.

Рейнольдсу удалось обнаружить безразмерное число, описывающее характер потока вязкой жидкости. Сам ученый получил его экспериментально, проведя изнурительную серию опытов с различными жидкостями, однако вскоре было показано, что его можно вывести и теоретически из законов механики ньютона и уравнений классической гидродинамики. Это

 

число, которое теперь называют числом Рейнольдса и обозначают Кв, характеризует поток и равно:

Кв = уЬр/ц,

где р — плотность жидкости, V — скорость потока, а Ь — характерная длина элемента потока (в этой формуле важно помнить, что Кв — это одно число, а не произведение К х е).

Теперь давайте посмотрим на размерность составляющих числа Рейнольдса:

— размерность коэффициента вязкости ц — ньютоны умножить на секунды разделить на кв. метры, или нс/м2. Если вспомнить, что, по определению, н = кг-м/с2, мы получим кг/м-с

— размерность плотности р — килограммы разделить на кубические метры, или кг/м3

— размерность скорости V — метры разделить на секунды, или м/с

— размерность длины элемента потока Ь — метры, или м Отсюда получаем, что размерность числа Рейнольдса равна:

(м/с) х (м) х (кг/м3) : (кг/м-с), или после упрощения

(кг/м-с) : (кг/м-с)

Итак, все единицы измерения в размерности числа Рейнольдса сокращаются, и оно действительно оказывается безразмерной величиной.

Рейнольдсу удалось выяснить, что при значении этого числа 2000-3000 поток становится полностью турбулентным, а при значении Кв меньше нескольких сотен — поток полностью ламинарный (то есть не содержит завихрений). Между двумя этими значениями поток носит промежуточный характер.

Можно, конечно, считать число Рейнольдса чисто экспериментальным результатом, однако его можно интерпретировать и с позиции законов Ньютона. Жидкость в потоке обладает импульсом, или, как иногда говорят теоретики, «инерционной силой». По сути это означает, что движущаяся жидкость стремится продолжить свое движение с прежней скоростью. В вязкой жидкости этому препятствуют силы внутреннего трения между слоями жидкости, стремящиеся затормозить поток. Число Рей-нольдса как раз и отражает соотношение между двумя этими силами — инерции и вязкости. Высокие значения числа Рей-нольдса описывают ситуацию, когда силы вязкости относительно малы и не способны сгладить турбулентные завихрения потока. Малые значения числа Рейнольдса соответствуют ситуации, когда силы вязкости гасят турбулентность, делая поток ламинарным.

 

Число Рейнольдса очень полезно с точки зрения моделирования потоков в различных жидкостях и газах, поскольку их поведение зависит не от реальной вязкости, плотности, скорости и линейных размеров элемента потока, а лишь от их соотношения, выражаемого числом Рейнольдса. Благодаря этому можно, например, поместить в аэродинамическую трубу уменьшенную модель самолета и подобрать скорость потока таким образом, чтобы число Рей-нольдса соответствовало реальной ситуации полномасштабного самолета в полете. (Сегодня, с развитием мощной компьютерной техники, нужда в аэродинамических трубах отпала, поскольку воздушные потоки можно смоделировать на компьютере. В частности, первым гражданским авиалайнером, полностью спроектированным исключительно с использованием компьютерного моделирования, стал «Боинг-747». В этой связи любопытно отметить, что при проектировании гоночных яхт и высотных зданий до сих пор практикуется их «обкатка» в аэродинамических трубах.)

 

ОСБОРН РЕИНОЛЬДС (Osborne Reynolds, 1842-1912) — ирландский инженер-физик. Родился в Белфасте в семье потомственного священника англиканской церкви. После недолгого практического обучения инженерному делу в строительной фирме поступил в Кембридж, по окончании которого, несмотря на относительную молодость, сразу же получил должность профессора кафедры гражданского инженерного дела Оуэнс-колледжа (современный Манчестерский университет), которую и занимал на протяжении 37 лет. Рейнольдс занимался научно-техническими разработками в области гидродинамики и гидравлики, стал основоположником теорий смазки и турбулентности, принципиально усовершенствовал конструкцию центробежных насосов. Для изучения устьевых потоков построил уменьшенную модель дельты реки Мерси.

Эволюция звезд

Жизненный цикл звезд зависит от их массы: звезды с низкой массой в конечном итоге превращаются в белых карликов, в то время как жизнь звезд с большой массой заканчивается взрывом сверхновых

xx

Черные дыры

эволюция ЗВЕЗД

1905- • диаграмма герц-1913 шпрунга—рассела

1917, • ядерный распад 1934 и синтез

1931 • предел

Чандрасекара

Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания (см. закон кулона) и вступить в реакцию термоядерного синтеза (см. ядерный распад и синтез).

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц. В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия (см. теория относительности). Из-за этого внутреннее ядро новорожденной звезды быстро разогревается до сверхвысоких температур и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности — и наружу. одновременно давление в центре звезды начинает расти (см. уравнение состояния идеального газа). Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. о звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла, или

эволюции (см. диаграмма ге рцш пр у нга —рас се л а ). Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом, или нуклеосинтезом.

В частности, Солнце находится на активной стадии сжигания водорода в процессе активного нуклеосинтеза уже около 5 миллиардов лет, и запасов водорода в ядре для его продолжения нашему светилу должно хватить еще на 5,5 миллиарда лет. Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Таким образом, чем массивнее звезда, тем короче время ее жизни, определяемое исчерпанием запасов водорода, и самые крупные звезды в буквальном смысле сгорают за «какие-то» десятки миллионов лет. Самые мелкие звезды, с другой стороны, «безбедно» живут сотни миллиардов лет. Так что по этой шкале наше Солнце относится к «крепким середнякам».

 

Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчивают свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх — и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту. Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает наконец в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий — своего рода «пепел» затухающей первичной реакции нуклеосинтеза — вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, — один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно большую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.

Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса — на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером. В его роли выступает давление вырожденного электронного газа (см. предел чандрасекара). Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза — углерода, затем кремния, магния — и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо — это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени — некоторые теоретики полагают, что на это уходят считанные секунды, — свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, все вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из-под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра — и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки у звезд массой порядка 10-30 солнечных масс продолжающийся гравитационньгй коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов — иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная

дыра.

 

Экологическая сукцессия

Восстановление

экосистемой

нарушенного

равновесия

проходит через

четко определенные

стадии


ЭКСПОНЕНЦИАЛЬНЫЙ РОСТ

РАВНОВЕСИЕ В ПРИРОДЕ

ЭКОЛОГИЧЕСКАЯ СУКЦЕССИЯ

1950-е

ЗЕЛЕНАЯ РЕВОЛЮЦИЯ

МАКСИМАЛЬНАЯ

УСТОЙЧИВАЯ

ДОБЫЧА

ТЕОРИЯ РАВНОВЕСИЯ

МАКАРТУРА—

УИЛСОНА

Экосистему можно вывести из состояния равновесия многими способами. Обычно это бывает пожар, наводнение или засуха. После такого нарушения равновесия новая экосистема сама себя восстанавливает, и этот процесс носит регулярный характер и повторяется в самых разных ситуациях. Что же происходит в нарушенной экосистеме? На месте нарушения определенные виды и вся экосистема развиваются таким образом, что порядок появления этих видов одинаков для схожих нарушений и схожих ареалах. В этой последовательной смене одних видов другими и заключается суть экологической сукцессии.

Например, в большинстве северо-восточных штатов США в XVIII веке земли, занятые лесами, были расчищены и на этих территориях были построены фермы, в XIX веке продолжалась обработка этих земель, а в ХХ веке фермы были заброшены и участки вновь стали превращаться в леса. Растения, с течением времени заселившие поля, появлялись в определенной, уже известной и строго повторяющейся последовательности. В первый год вырастали однолетние сорняки и одиночные сеянцы деревьев. В течение нескольких последующих лет происходило заселение определенными видами (это так называемые «пионерные виды», или, выражаясь более научно, ранние сукцессионные виды), которые начинали преобладать. Типичный пионерный вид — сосна Вей-мутова. Она растет очень быстро, и ее семена распространяются на большую территорию. В течение нескольких десятилетий пионерные виды образовывали густой лес.

Следующий этап — появление деревьев, которые хорошо растут в тени пионерных видов, — например, кленов. Через полвека пионерные деревья становились зрелыми и постепенно погибали. Их семена уже не могли прорастать под покровом леса, и состав популяции деревьев сдвигался в сторону медленно растущих новичков — так называемых поздних сукцессионных видов. В конце концов весь лес стал состоять из этих видов деревьев, что и наблюдают каждый год осенью жители Новой Англии, когда листья деревьев меняют окраску и лес приобретает огненный цвет, характерный для кленов.

Такой пример быстрорастущих пионеров с последующим заселением медленно растущими видами наблюдается во многих экосистемах. Например, на недавно образованных прибрежных песчаных дюнах первой появляется песчаный тростник. Эта трава помогает укрепить дюны так, чтобы в них смогли укорениться виды-преемники (вначале кустарники, а затем и деревья).

Изучая сукцессию в экосистемах, экологи выделили три механизма ее действия.

Содействие. Появившиеся в новой экосистеме пионерные виды облегчают другим видам последующее заселение. Например, после отступления ледника первыми появляются лишайники и некоторые растения с поверхностными корнями — то есть виды, способные выжить на бесплодной, бедной питательными вещест-

 

вами почве. По мере отмирания этих растений происходит нарастание слоя почвы, что дает возможность укорениться поздним сукцессионным видам. Аналогично ранние деревья дают тень и убежище для ростков поздних сукцессионных деревьев.

Сдерживание. Иногда пионерные виды создают условия, усложняющие или вообще делающие невозможным появление поздних сукцессионных растений. Когда около океана появляются новые поверхности (например, в результате строительства бетонных пирсов или волнорезов), они быстро обрастают пионерными видами водорослей, и другие виды растений просто вытесняются. Это вытеснение происходит очень легко, поскольку пионерный вид воспроизводится крайне быстро и вскоре покрывает все доступные поверхности, не оставляя места для последующих видов. Пример активного сдерживания — появление горчака, азиатского растения, распространившегося по американскому Западу. Горчак в значительной мере защелачивает почву, в которой растет, что делает ее непригодной для многих диких трав.

Сосуществование. Наконец, пионерные виды могут вообще не оказывать на последующие растения никакого воздействия — ни полезного, ни вредного. В частности, это происходит, если разные виды используют разные ресурсы и растут независимо друг от

друга (см. дифференциальное использование ресурсов).

Важно понимать, что конечное состояние леса или дюны экологически неустойчиво (см. рав но в ес ие в при р о де). Зрелый лес обычно характеризуется нулевым суммарным приростом органических веществ. Это означает, что с течением времени из-за потери веществ под воздействием таких процессов, как эрозия, лес постепенно начнет погибать. Кстати, большинство лесов обладают максимальной продуктивностью в течение первой половины сукцес-сионного цикла.

 

Эксперимент Ван Гельмонта

Растения добывают биомассу не из почвы

1779, 1905

эксперимент ван гельмонта

ФОТОСИНТЕЗ







Последнее изменение этой страницы: 2017-02-17; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.15.246 (0.099 с.)