Координация дыхания с другими функциями организма 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Координация дыхания с другими функциями организма



В филогенетическом развитии организма человека и животных дыхательный центр приобретает сложные синаптические взаимоот­ношения с различными отделами ЦНС.

В отличие от других физиологических функций организма ды­хание находится под контролем автономной (вегетативной) и сома­тической нервной системы, поэтому у человека и животных дыхание нередко называют вегето-соматической функцией. Существует тес­ное взаимодействие регуляции дыхания гуморальной и рефлекторной природы и процессами сознательной деятельности мозга. Однако во время сна или в состояниях, связанных с отсутствием сознания у человека, сохраняется внешнее дыхание и обеспечивается нормаль­ное поддержание газового гомеостаза внутренней среды. С другой стороны, человек имеет возможность по собственному желанию изменять глубину и частоту дыхания или задерживать его, например, во время пребывания под водой. Произвольное управление дыханием основано на корковом представительстве проприоцептивного анали­затора дыхательных мышц и на наличии коркового контроля ды­хательных мышц.

Электрическое раздражение коры больших полушарий у человека и животных показало, что возбуждение одних корковых зон вызы­вает увеличение, а раздражение других - уменьшение легочной вентиляции. Наиболее сильное угнетение дыхания возникает при электрической стимуляции лимбической системы переднего мозга. При участии центров терморегуляции гипоталамуса возникает гиперпноэ (учащение дыхания) при гипертермических состояниях.

Однако многие нейрофизиологические механизмы взаимодейст­вия нейронов переднего мозга с дыхательным центром остаются пока мало изученными.

Дыхание опосредованно через газы крови влияет на кровообра­щение во многих органах. Важнейшим гуморальным, или метабо­лическим, регулятором локального мозгового кровотока являются Н+ артериальной крови и межклеточной жидкости. В качестве ме­таболического регулятора тонуса сосудов мозга рассматривают также СО2. В последнее время эта точка зрения подвергается сомнению, поскольку СО2 как молекулярное соединение практически отсутст­вует во внутренней среде организма. Молекулярный СО2 встречается в организме в альвеолярном воздухе, а в тканях только при переносе СО2 через аэрогематический и гистогематический барь­еры. В крови и межклеточной жидкости СО2 находится в связанном состоянии, в виде гидрокарбонатов, поэтому правильнее говорить о метаболической регуляции Н+ тонуса гладких мышц артериальных сосудов и их просвета. В головном мозге повышение концентрации Н+ расширяет сосуды, а понижение концентрации Н+ в артериальной крови или межклеточной жидкости, напротив, повышает тонус глад­ких мышц сосудистой стенки. Возникающие при этом изменения мозгового кровотока способствуют изменению градиента рН по обе стороны гематоэнцефалического барьера и создают благоприятные условия либо для вымывания из сосудов мозга крови с низким значением рН, либо для понижения рН крови в результате замед­ления кровотока.

Функциональное взаимодействие систем регуляции дыхания и кровообращения является предметом интенсивных физиологических исследований. Обе системы имеют общие рефлексогенные зоны в сосудах: аортальную и синокаротидные. Периферические хеморецепторы дыхания аортальных и каротидных телец, чувствительные к гипоксии в артериальной крови, и барорецепторы стенки аорты и каротидных синусов, чувствительные к изменению системного артериального давления, расположены в рефлексогенных зонах в непосредственной близости друг от друга. Все названные рецепторы посылают афферентные сигналы к специализированным нейронам основного чувствительного ядра продолговатого мозга - ядра оди­ночного пучка. В непосредственной близости от этого ядра находится дорсальное дыхательное ядро дыхательного центра. Здесь же в продолговатом мозге находится сосудодвигательный центр. Координацию деятельности дыхательного и сосудодвигательного центров продолговатого мозга осуществляют нейроны ряда интегративных ядер бульбарной ретикулярной формации.

Дыхание и мышечная нагрузка. Мышечная работа, совершаемая организмом, сопровождается изменением деятельности многих органов и их систем: изменением кровоснабжения, деятельности сердца, почек, половых желез, а также некоторых желез внутренней секреции и других органов.

От уровня развития и условий деятельности дыхательных мышц зависит интенсивность дыхания. В зависимости от того, какие звенья грудной клетки преимущественно перемещаются и какие мышцы сокращаются, принято выделять 3 типа дыхания: грудной тип дыхания, брюшной или диафрагмальный и смешанный.

Интенсификация дыхания при мышечной работе проявляется в увеличении дыхательного объема и частоты дыхания. Это требует участия большого числа дыхательных мышц и усиления их активности. В результате общая кислородная емкость работы дыхания возрастает: прогрессивно увеличивается потребление кислорода на каждый литр вентилирующего воздуха, т.е. повышается энергетическая эффективность дыхания. Но даже при самой тяжелой мышечной работе возможность дыхательного аппарата не используется целиком. Установлено, что предельная легочная вентиляция при выполнении мышечной работы не определяется возможностями дыхательных мышц или механическими свойствами дыхательного аппарата. У человека при «спонтанном» дыхании сочетание глубины и частоты дыхания близко к оптимальному, работа дыхания на I л вентилируемого воздуха при этом минимальна. Поэтому обучение «правильному» дыханию, изменяющему нормальное соотношение частоты и глубины дыхания чаще всего нецелесообразно, т.к. уменьшает энергетическую эффективность работы дыхания.

На наш взгляд, целесообразно рассмотреть недыхательные функции легких. Легкие обеспечивают ряд функций, не связанных с обменом газов между кровью и внешней средой. К ним относятся следующие:

1) защита организма от вредных компонентов вдыхаемого воз­духа;

2) метаболизм биологически активных веществ.

В легкие из окружающей среды поступает воздух, содержащий раз­личные примеси в виде неорганических и органических частиц живо­тного и растительного происхождения, газообразных веществ и аэро­золей, а также инфекционных агентов: вирусов, бактерий и др.

Проходя по воздухоносным путям, воздух освобождается от по­сторонних примесей и поступает в респираторный отдел очищенным от пылевых частиц и микроорганизмов, что поддерживает стериль­ность альвеолярного пространства.

Очищение вдыхаемого воздуха от посторонних примесей осуще­ствляется с помощью следующих механизмов: 1) механическая очи­стка воздуха (фильтрация воздуха в полости носа, осаждение на слизистой оболочке дыхательных путей и транспорт мерцательным эпителием ингалированных частиц, чиханье и кашель); 2) действие клеточных (фагоцитоз) и гуморальных (лизоцим, интерферон, лактоферрин, иммуноглобулины) факторов неспецифической защиты.

Слизистая оболочка полости носа вырабатывает за сутки 100-500 мл секрета. Этот секрет, покрывающий слизистую оболочку, участвует в выведении из ды­хательных путей инородных частиц и способствует увлажнению вдыхаемого воздуха. При носовом дыхании наиболее крупные час­тицы пыли (размером до 30 мкм) задерживаются волосяным филь­тром преддверия полости носа, а частицы размером 10-30 мкм оседают на слизистой оболочке носовой полости благодаря турбу­лентному движению воздушной струи. Затем частицы пыли и мик­роорганизмы вместе со слизью перемещаются из передней части полости носа со скоростью 1-2 мм/ч к выходу из него за счет упорядоченного движения ресничек мерцательного эпителия. Из задней части полости носа слизь с осевшими на ней частицами движется со скоростью 10 мм/мин по направлению движения вды­хаемого воздуха к глотке, откуда в результате рефлекторно возни­кающих глотательных движений попадает в пищеварительный тракт.

Из полости носа воздух по воздухоносным путям поступает в трахею и далее в бронхи. Слизистая оболочка трахеи и бронхов продуцирует в сутки 10-100 мл секрета, который покрывает по­верхность слизистой оболочки трахеи и бронхов слоем толщиной 5-7 мкм. Регуляция продукции секрета осуществляется парасим­патическим и симпатическим отделами автономной (вегетативной) нервной системы. Активными стимуляторами секреции являются простангландин E1 и гистамин. Бокаловидные клетки реагируют в

основном на механические воздействия. Большую роль в рефлек­торной регуляции секреции играет раздражение ирритантных ре­цепторов блуждающего нерва. С помощью нервной системы регу­лируется не только объем, но и вязкоэластические свойства секрета.

Эскалация (выведение) секрета осуществляется реснитчатым эпи­телием трахеи и бронхов. Каждая клетка мерцательного эпителия имеет около 200 ресничек длиной 6 мкм и диаметром 0,2 мкм, которые совершают координированные колебательные движения с частотой 800-1000 в минуту. Эти клетки образуют поля различного размера. Число клеток реснитчатого эпителия, образующих одно поле, колеблется от нескольких десятков до нескольких сотен. На­правление движения ресничек в одном поле отличается от направ­ления движения в соседних полях, что обусловливает спиралеоб­разный характер выведения секрета. У женщин частота колебаний ресничек несколько выше, чем у мужчин. Источником энергии для движения ресничек служит АТФ. Наибольшая частота колебаний ресничек наблюдается при температуре 37 °С, снижение темпера­туры вызывает угнетение их двигательной активности.

В регуляции двигательной активности ресничек принимает уча­стие автономная нервная система, что подтверждается на следующем опыте: денервация легких у собак вызывает резкое нарушение транс­порта бронхиальной слизи, однако через 4-5 месяцев после операции под влиянием периферических нервных механизмов регуляции транспорт слизи полностью восстанавливается. На увеличение ак­тивности ресничек мерцательного эпителия влияют простагландины E1, Е2 и лейкотриен С4. К числу экзогенных факторов, тормозящих активность мерцательного эпителия, относится вдыхание табачного дыма.

Пылевые частицы диаметром 3-10 мкм и часть микроорганизмов оседают на слизистой оболочке трахеи и бронхов. Этому способствует прогрессирующее увеличение площади контакта вдыхаемого воздуха с поверхностью слизистой оболочки бронхиального дерева в резуль­тате последовательного его деления на более мелкие ветви. Слизь с прилипшими к ней частицами благодаря движению ресничек перемещается к глотке против направления движения вдыхаемого воздуха. Находящийся в виде капель слизистый секрет в процессе движения образует хлопья, из которых формируются более крупные структуры - диски. Капли транспортируются от одного поля к другому, хлопья и диски - при помощи комбинированного действия ресничек нескольких полей. Скорость эскалации слизи в различных частях бронхиального дерева различна. Медленнее всего осуществ­ляется ее транспорт в бронхах респираторного отдела. В трахее же скорость эскалации слизи может возрастать в 20-40 раз. Время выведения частиц, попавших в легкие с вдыхаемым воздухом, ко­леблется от 1 до 24 часа, у пожилых людей эта величина выше. В результате деятельности ресничек не только освобождаются брон­хи от микроорганизмов, но и сокращается время их контакта с клеткой эпителия до 0,1 с, что затрудняет инвазию микроорганизмов в ткань. Эффективность транспорта зависит как от функционального состояния реснитчатого эпителия, так и от вязкости и эластичности слизи.

Механическое удаление инородных частиц осуществляется также защитными дыхательными рефлексами: чиханьем и кашлем.

Частицы пыли размером менее 2 мкм, а также микроорганизмы и вирусы могут с током воздуха попадать в полость альвеол.

Эпителий, выстилающий респираторный отдел, состоит в основ­ном из дыхательных альвеолоцитов и альвеолярных секреторных клеток (альвеолоцитов I и II типа). Кроме того, из альвеолярных стенок в альвеолярное пространство выступают крупные клетки округлой формы. Такие же клетки находятся в свободном состоянии и в просвете альвеол. Они часто содержат посторонние включения (угольный пигмент, асбестовые нити и др.). Данные клетки, полу­чившие название альвеолярных фагоцитов, являются макрофагами. Продолжительность их жизни от нескольких месяцев до нескольких лет. Альвеолярные макрофаги осуществляют защитную функцию, фагоцитируя попавшие в альвеолярные пространства пылевые час­тицы, микроорганизмы и вирусы. Фагоцитозу подвергаются и струк­туры эндогенного происхождения: компоненты легочного сурфактанта, клетки альвеолярного эпителия и продукты их распада. Аль­веолярные макрофаги движутся по воздухоносным путям и достигают бронхиол, где их дальнейшее продвижение облегчается деятельно­стью ресничек. Затем они с мокротой проглатываются или выделя­ются во внешнюю среду. Часть альвеолярных макрофагов вместе с поглощенными частичками мигрирует с альвеолярной поверхности в интерстициальную ткань, в дальнейшем перемещаясь в составе лимфы. При сердечной недостаточности в легких отмечается застой крови, в результате чего эритроциты попадают в альвеолы, где подвергаются фагоцитозу альвеолярными макрофагами. Последние выделяются в большом количестве с мокротой при кашле, причем благодаря наличию в них железосодержащего пигмента дают поло­жительную гистохимическую реакцию на железо. В фагоцитозе микроорганизмов в дыхательных путях активное участие принимают и нейтрофильные лейкоциты.

Кроме мукоцилиарного транспорта и фагоцитоза защиту поверхности трахеи и бронхов обеспечивают и неспецифические гуморальные механиз­мы. В бронхиальной слизи содержатся лизоцим, интерферон, лактоферрин, протеазы и другие компоненты.

Интерферон уменьшает количество вирусов, которые колонизи­руют клетки, лактоферрин связывает железо, необходимое для жиз­недеятельности бактерий и благодаря этому оказывает бактериостатическое действие. Лизоцим расщепляет гликозоаминогликаны кле­точной оболочки микробов, после чего они становятся нежизне­способными.

Важным звеном гуморальной системы местного иммунитета яв­ляется секреторный иммуноглобулин A (s IgA), содержание которого в слизи проксимальных отделов бронхиального дерева в 10 раз выше, чем в сыворотке крови. Основное защитное действие s IgA проявляется в его способности агглютинировать бактерии и препят­ствовать их фиксации на слизистой оболочке, а также нейтрализо­вывать токсины. Кроме того, sIgA в присутствии комплемента осу­ществляет лизис бактерий совместно с лизоцимом. Бронхиальный секрет содержит иммуноглобулины и других классов, являющиеся компонентами общего гуморального иммунитета.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 279; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.203.143 (0.012 с.)