Вопрос№44.Вирусные инфекции растений. Пути передачи вирусных инфекций у растений. Методы борьбы с вирусными инфекциями растений 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос№44.Вирусные инфекции растений. Пути передачи вирусных инфекций у растений. Методы борьбы с вирусными инфекциями растений



Фитопатогенные вирусы широко распространены в природе. В разных регионах Земли они поражают самые разнообразные виды растений: дикорастущие и возделываемые, одно- и многолетние, овощные и плодовые культуры, травянистые, кустарники и деревья. Больше всего фитопатогенных вирусов выделено из цветковых растений, из папоротников и голосеменных - в редких (единичных) случаях. Размножаясь, фитопатогенные вирусы вызывают цветовую пестролистность, скручивание, бугристость и другие деформации листьев; локальный и диффузный их некроз; обезображивание плодов; задержку роста растений.

Таксономия

Окончательная таксономия фитопатогенных вирусов далека от завершения, что во многом связано с трудностью их выращивания ill vitro в протопластах клеток растений и однослойных культурах клеток насекомых-переносчиков, в которых не происходит полный цикл их развития.

Лучше всего изучены вирусы экономически важных культур. Среди них выделяют две группы фитопатогенных вирусов: обычные классифицированные вирусы и так называемые вироиды (греч. eides - подобные), или вирусоподобные агенты.

Подавляющее большинство классифицированных вирусов растений - РНК-вирусы семейств рабдо- и реовирусов. Исключение составляют изометрические вирусы (50 нм) мозаики цветной капусты и мозаики георгины, содержащие обычную двухцепочечную ДНК и дефектные сателлиты вируса некроза табака и кольцевой пятнистости табака с неполноценным геномом, репликация и созревание которых происходят только в присутствии родительского вируса-помощника.

Группа РНК-вирусов с полноценным геномом насчитывает около сотни видов. Большинство из них вирионы с одноцепочечной линейной цельной РНК. По морфологии их удобно подразделять на три подгруппы: а) бациллярные (около 10 видов), отличающиеся таким же поперечником, как и у рабдовируса желтой карликовости картофеля, имеющего размеры 380 х 75 нм; б) палочковидные (более 30 видов), поперечник которых не превышает 18 нм, а длина варьирует от 300 нм, как у вируса табачной мозаики (ВТМ) и близких ему вирусов зеленой крапчатости мозаики огурца, кольцевой пятнистой орхидеи, мозаики подорожника и гороха, до 1250 нм, как у вирусов желтой свеклы и пятнистого некроза гвоздики; в) изометрические (более 30 видов), в диаметре не превышающие 30 нм, типичными представителями которых являются вирусы мозаики костра, крапчатости коровьего гороха, мозаики огурца, некротической кольцевой пятнистости сливы, кольцевой пятнистости табака, желтухи ячменя, кустистой карликовости томата, желтой мозаики турнепса.

 

Вопрос№45. Неканонические вирусы: прионы и вироиды и механизмы их репродукции. Вироиды. Название предложено в 1971 году. Т.е. они обнаружены, как таковые, сравнительно недавно. И название предложил некий Тайнер американец.Это инфекционные агенты, которые вызывают заболевание у растений и относятся к определённым биологическим объектам, которые раньше считались вирусами, но как выяснилось в последующем, и как в настоящее время существует представление, являются патогенами совершенно иного класса. Их некоторыми свойствами сближают с вирусами, но в отличие от вирусов они получили название вироидов. Данные агенты были иденфецированны как возбудители опасных заболеваний культурных растений, в результате которых они приносят довольно существенный экономический ущерб.Особенность вироида состоит в том, что они довольно оригинально организованны. Их структура очень интересна и воспроизводятся некими несовершенными и совершенно непонятными способами. Изучено к настоящему времени примерно около полутора десятков типов данных агентов. Вироид можно рассматривать как вирусоподобную инфекционную частицу, состоящую из однонитевой, ковалентно замкнутой кольцевой молекулы РНК. Репродукция вироидов, полагают, связана с РНК-полимеразой II эукариотической клетки. Роль РНК-полимеразы I и РНК-полимеразы III вообще, считается, никакого значения не имеет для этой репродукции вироидов. А вот то, что РНК-полимераза II может обеспечивать репродукцию вироида, ну а РНК-полимераза II работает на ДНК матрице, и если блокировать этот фермент, в частности обработкой известного актиномицина D, то блокируется синтез клеточного РНК и блокируется воспроизведение вироида. Вироидная РНК в таких клетках оказывается фактически неопределяемой. Предложено несколько моделей репродукции вироидов, которые базируются на обнаружении промежуточных продуктов имеющих отношение к вироидным РНК, полноценные вироиды. В соответствии с одной моделью предполагается, что на «+» РНК вироида синтезируется «-» нить, за счёт ферментов клетки, которая замыкаются в кольцо, и это кольцо служит матрицей для синтеза «+» нити по типу катящегося кольца, которое потом фрагментируются на отдельные молекулы, уже истинные молекулы РНК. Либо на однонитевой «+» РНК формируется уже кольцевая «-» нить, которая опять же обеспечивает синтез составных конкатемерных «+» нитей. В соответствии со второй моделью, воспроизведение осуществляется следующим образом. Всё это конечно надумано. «+» кольцо является матрицей для синтеза «-» нитей, опять же не конкатемеры, на которой синтезируются конкатемерная «+» нить, которая подвергается фрагментации на молекуле ДНК вироидным (?????), замыкающимся в кольцо. И третья модель, которая объединяет первую и вторую, значит с добавками там всякими. «+» нить является матрицей для синтеза конкатемерной «-» нити. «-» нить режется на отдельные фрагменты, которые замыкаются в кольцо и являются копией «+» нити, и эти уже «-» кольца служат матрицей для синтеза конкатемерных «+» нитей, которые каким-то приспособлением режутся на отдельные молекулы вироидов. Прионы. В биохимическом и молекулярно-биологическом словаре 1989 года издания термин прионы расшифровывается, как производное от двух слов pr otein и infect ion (белок и инфекция). Это частица небольших размеров, сопостовима с размерами вируса, являющимися возбудителями ряда дегенеративных поражений нервной системы млекопитающих, и говорят, что и у кур тоже. Агенты эти первоначально описывались как возбудители медленно текущих вирусных инфекций, как slow virusis – медленные вирусы. Однако в последующем было показано, что от вирусов они отличаются абсолютным отсутствием нуклеиновых кислот – ни РНК, ни ДНК – в прионах не обнаруживается. Относительно способов репродукции прионового белка существуют только чисто теоретические размышления.1) Самая старая гипотеза. Прионовый белок кодируется геномом приона: прион – обычный вирус → инфекция → репликация, транскрипция, трансляция. Но: в прионовом белке нет нуклеиновой кислоты, способной закодировать этот белок. Прионовый белок кодирует ДНК хозяина. Прион с короткой негеномной нуклеиновой кислотой → нуклеиновая кислота встраивается в геном хозяина → экспрессия гена, детерминирующего белок приона (или же эта нуклеиновая кислота просто связывается с определенными областями генома клетки-хозяина). Прионовый белок также кодируется ДНК хозяина, но механизм воспроизведения другой. Белок без нуклеиновой кислоты при инфицировании может активировать экспрессию гена хозяина → транскрибируется → транслируется в предшественник прионового белка → трансформируется за счет каких-то превращений в новый прионовый белок. ДНК хозяина не имеет гена на прионовый белок. При заражении в клетках имеет место обратная трансляция: прионовый белок → иРНК → новый прионовый белок. Сами прионовые белки управляют синтезом белка и формированием новых прионовых частиц. (Откровенный бред!!!)

 

 

Вопрос№46. Химические антивирусные средства и механизм их действия. Интерфероны.с.69,106 Сложность получения противовирусных средств обусловлена тесной связью этапов репродукции вирусов с метаболическими, энергетическими и ферментативными реакциями заражённой клетки. В результате любой противовирусный препарат практически всегда оказывает токсическое воздействие и на внутриклеточные процессы. Именно поэтому до сих пор не найден пенициллин для вирусов. По характеру действия и клинической значимости препараты, применяемые для лечения вирусных инфекций, подразделяют на четыре основные группы — этиотропные, иммуномодулирующие (корригирующие дефекты иммунного реагирования, развивающиеся при заболевании), патогенетические (направленные на борьбу с интоксикацией, обезвоживанием, сосудистыми и органными поражениями, аллергическими реакциями, а также на профилактику бактериальных суперинфекций), симптоматические (купирующие сопутствующую симптоматику, например кашель, головную боль и др.). Механизмы действия химиопрепаратов противовирусных состоят в:
1) подавлении репродукции вируса в клетке, особенно путем ингибиции синтеза и активности вирусиндуцированных ферментов;
2) блокаде взаимодействия рецепторов вируса и клетки;
3) ингибиции процесса депротеинизации вириона в клетке, репликации геномов вируса, транскрипции и трансляции заключенной в них информации;
4) подавлении зараженных и особенно продуцирующих вирус клеток хозяина;
5) изменении механизмов взаимодействия вируса и клетки хозяина. Химиотерапевтический индекс - величина, выражающая отношение максимально переносимой (толерантной), или 50% дозы химиотерапевтического средства к его минимальной (или 50%) лечебной или ингибирующей (микробоцидной, микробостатической) дозе, или наоборот. В первом варианте величина Х.и. должна быть больше 3. Постулируется (с рядом оговорок), что чем выше X. и., тем эффективнее препарат. В 1957 г. вирусологи - сотрудники Лондонского национального института англичанин Айзекс и швейцарец Линдеман случайно во время опытов открыли интерферон. Интерферон найден у всех позвоночных животных, причем у различных видов животных интерферон различен; он максимально активен лишь в клетках того вида животных, от которых получен.При заражении вирус начинает размножаться, и одновременно клетка-хозяин начинает продуцировать интерферон. Интерферон выходит из клетки, вступает в контакт с соседними клетками и делает их невосприимчивыми к вирусу. Интерферон неспецифичен, он универсален, действует не избирательно против какого-то вируса, а защищает организм от любых вирусов. Клетка, пораженная вирусом, выделяет интерферон в качестве противовирусного вещества к соседним клеткам, мобилизуя их на борьбу с размножающимся вирусом. Установлено, что интерферон не проникает в клетку, а связывается с особыми рецепторами на мембране. Как выяснилось, интерферон представляет из себя гликопротеин, 1) не очень высокого молекулярного веса, 2) устойчив к низким значениям pH от ряда других белков. Это облегчает выделение его из различных других материалов. Как было показано, при изучении его действии на вирусы, он не обладает никаким противовирусным эффектом. Постольку сам интерферон непосредственно на вирус не действует, то было высказано предположение, что в процессе воздействия интерферона в клетке возникают, так сказать, антивирусные состояния. Когда окружающая ситуация, внешняя среда, не способствует процессам репродукции вируса. Было показано, что если воздействовать на клетку интерфероном и блокировать синтез белка в клетке, то интерферон не образуется. Это позволило сделать вывод, что в процессе индукции интерферона в клетке синтезируется нейкий белок, получивший название ITP (ingibithion translation protein – белок, ингибирующий трансляцию), и в результате активности данного белка блокируется, главным образом, процесс трансляции. Т.е. образование белков, в частности, вирусно-ДНКовых. Поэтому вирус не может синтезировать и репродуцироваться в таких условиях. В природе существует несколько интерферонов α- интерферон, β- интерферон и γ- интерферон. Следует отметить такой фактор, что вирусная инфекция индуцирующая синтез интерферона в клетке, не приводит к защите клетки, инфицированной, от вируса. В этой клетке, не смотря на синтез интерферона, вирус продолжает репродуцироваться. Но в силу своего низкого молекулярного веса, интерферон способен высвобождаться из клетки и взаимодействовать с соседними, не заражёнными вирусами, клетками, индуцируя в них уже синтез интерферона. И уже эти клетки, в которых индуцируются возникновения антивирусного состояния оказываются устойчивыми к заражению высвобождающимся вирусными частицами из первично инфицированных клеток. Иными словами, заражённая клетка погибает, но, так образно выражаясь, приносит себя в жертву остальным клеткам, спасая организм от вирусной инфекции. Можно выделить две стадии действия интерферона на вирусы. Первая стадия: продукция интерферона, вторая стадия: действии интерферона. Продуцируется интерферон в одной клетке, которая инфицируется вирусом или каким-то индуктором синтеза интерферона, т.е. РНК-содержащие вирусы естественно в процессе эволюции у них образуются двунитиевые РНК и она является множественным индуктором в синтезе интерферона.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 467; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.221.69.42 (0.006 с.)