Последовательные схемы включения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Последовательные схемы включения



Варианты последователь­ных схем показаны на рисунке 4.8.1.1. Индуктивный датчик питается переменным напряжением . Величина тока в датчике при по­стоянной величине питающего напряжения будет зависеть от его сопротивления: , где – круговая частота питания схемы, – добротность датчика, – сопротивление потерь датчика, – частота питающего датчик тока.

Чувствительность преобразования последовательной схемы

.

Изменение тока (выходной сигнал) при изменении полного со­противления датчика

,

где – коэффициент преобразования схемы включения.

Схема чувствительна к изменению напряжения питания и частоты питающего тока Используя простую последовательную схему включения индук­тивного датчика, нельзя получить высокую чувствительность и точ­ность измерений.

Последовательная схема может быть безрезонансной и резонансной (см. 4.8.1.1 в). В резонансной схеме ток в цепи будет определяться сопротивлением резонансного контура, состоящего из индуктивности датчика и конденсатора . При изменении это сопротивление меняется, вызывая изменение тока.

Если частота питающего напряжения совпадает с собствен­ной частотой колебательного контура , то сопротивление последовательного колебательного контура мини­мально, а параллельного – максимально. При изменении индуктивности датчика равенство частот будет нарушено, и сопротивление

 

последовательного контура будет увеличиваться, а па­раллельного – уменьшаться. Соответствующим образом будет из­меняться и ток в цепи. Чувствительность резонансной последова­тельной схемы в несколько раз выше чувствительности безрезонанс­ной последовательной схемы.

Вариант последовательной схемы для включения дифференци­ального датчика показан на рисунке 4.8.1.2. Каждая половина датчика и питается переменным током с напряжением . При из­менении измеряемого размера одна индуктивность уменьшается, а другая увеличивается на одну и ту же величину. Соответствующим образом изменяются токи в цепях обмоток датчиков. Эти токи и выпрямляются диодами и и во встречной полярности протекают через измеритель тока А. Измеритель тока будет показывать разницу токов в цепях обмоток и . При равенстве полных сопротивлений токи в их цепях будут равны, и амперметр А покажет нуль. При измене­нии измеряемого размера равенство сопротивлений нарушится, и показания амперметра будут отличаться от нуля.

Направление тока через амперметр будет зависеть от того, в цепи какой катушки или ток в данный момент больше.

Такие схемы включения дифференциальных индуктивных дат­чиков, которые реагируют не только на величину смещения изме­рительного стержня из нулевого положения, но и на направление смещения, называют фазочувствительными.

Схемы делителей напряжения

При включении по схеме дели­теля напряжения датчик включается в цепь последова­тельно с некоторым постоянным сопротивлением , которое в об­щем виде может быть комплексным. Добавочным сопротивлением может служить, например, резистор, индуктивность или емкость (см. рис. 4.8.2.1). При питании цепи переменным напряжением, напряжение на дат­чике, измеряемое вольтметром V того или иного типа, будет зави­сеть от полного сопротивления датчика. Если соблюдается условие , то

,

откуда следует, что напряжение на датчике прямо пропорционально величине его индуктивности.

Чувствительность по напряжению схемы

.

Выходной сигнал схемы включения при изменении полного со­противления датчика

.

С другой стороны, выходное напряжение схемы делителя напря­жения зависит также от величины напряжения питания и час­тоты питающего тока . Нетрудно убедиться, что и ; следовательно, стабильность источника питания по часто­те и напряжению определяет погрешность преобразования измери­тельного сигнала схемой делителя напряжения.

Включение дифференциального датчика в схему делителя напря­жения показано на рисунке 4.8.2.2. Обмот­ки датчика и образуют делитель напряжения, питаемый переменным током.

 

 

При изменении индуктивностей обмоток будет из­меняться их полное сопротивление и падение напряжения на обмотках. Это падение напряжения выпрям­ляется диодами и . Конден­саторы и служат для сгла­живания пульсаций выпрямленного напряжения, а резисторы , , являются сопротивлениями на­грузки для выпрямителей.

Показывающий вольтметр V подключен к одноименным полюсам выпрямителей. В этом случае он будет пока­зывать разницу напряжений на обмотках датчика и . Когда индуктивности обмоток равны, равны и их полные сопротивления и падения напряжения на них. Вольтметр при этом покажет нуль. Ре­гулировка нулевых показаний вольтметра при настройке может осу­ществляться переменным резистором .

Мостовые схемы

Весьма широкое распространение для вклю­чения индуктивных датчиков нашла мостовая схема включения в различных вариантах (см. рис. 4.8.3.1). Общий вид мостовых схем включения недиф­ференциального индуктивного датчика показан на рисунке. Если соблюдается условие

где – фазовый угол соответствующего комплексного сопротив­ления, то выходное напряжение равно нулю, и мост в этом слу­чае сбалансирован или уравновешен. Условие равновесия мостовой схемы формулируется следующим образом: «для равновесия мос­товой схемы необходимо, чтобы произведения модулей комплексных сопротивлений накрест лежащих плеч моста, а также суммы их углов фазовых сдвигов были равны между собой». При изменении индуктивности датчика условие равновесия мос­та нарушается, и выходное напряжение моста пропорционально из­менению индуктивности.

 

 

Плечи мостовой схемы в общем случае являются комплексными сопротивлениями и в конкретных схемах включения могут быть реа­лизованы включением резисторов, индуктивностей или емкостей. Пример реализации мостовой схемы приведен на рисунке 4.8.3.1 б). Одним плечом моста является индуктивность датчика , второе плечо – компенсационная индуктивность , третье и четвертое – образова­ны резисторами , и . Для резисторов фазовый угол . Для индуктивностей . В связи с этим удается обеспечить усло­вие равновесия мостовой схемы. Балансировка мостовой схемы для определенного значения при настройке осуществляется резисто­ром или изменением компенсационной индуктивности .

Мостовые схемы с компенсационной индуктивностью не всегда удобны при практическом исполнении. В этом отношении проще схемы на резистивно-емкостных элементах (см. рис. 4.8.3.1 в). Конденса­тор введен в схему для того, чтобы можно было обеспечить ра­венство сумм фазовых углов накрест лежащих плеч моста. Регу­лировкой резистора устанавливается требуемый угол фазового сдвига плеча, составленного резисторами , , частично и конденсатором и накрест лежащего по отношению к плечу с . Регулировкой резистора добиваются выполнения условия равен­ства произведений модулей сопротивлений накрест лежащих плеч. Таким образом оба регулировочных элемента и одновремен­но используются для балансировки мостовой схемы.

Мостовая схема используется и для включения дифференци­альных датчиков. В схеме на рисунке 4.8.3.2 а) два плеча моста образованы индуктивностями обмоток дифференциального датчика, а два других резисторами , и . Поскольку катушки датчика имеют одинаковую конструкцию и одинаковые параметры, то для них углы фазовых сдвигов близки, и второе условие равновесия мостовой схемы обеспечивается автоматически.

 

Для балансировки мостовой схемы при неравных значениях индуктивностей и в процессе настройки служит резистор , которым добиваются выполнения первого условия равновесия мостовой схемы.

В мостовой схеме, приведенной на рисунке 4.8.3.2 б), плечами моста являются индуктивности датчика и , а также обмотки тран­сформатора и резистор . В этой схеме указатель подключен к измерительной диагонали моста через трансформатор . Такое включение позволяет наилучшим образом согласовать между со­бой выходное сопротивление мостовой схемы и сопротивление из­мерителя для получения наибольшей чувствительности.

Резистор служит для балансировки мостовой схемы при настройке.

На рисунке 4.8.3.2 в), в приведена схема, аналогичная показанной на рисунке 4.8.3.2 а), а, но в данном случае изменено назначение диагоналей моста.

Все рассмотренные мостовые схемы работают в режиме неурав­новешенного моста, при котором изменение индуктивности датчика размера ведет к пропорциональному изменению выходного напря­жения на измерительной диагонали моста.

Выходное напряжение мостовой неуравновешенной схемы

,

где – относительное изменение полного сопротивления одного плеча (обмотки датчика) мостовой схемы; – коэффициент пре­образования мостовой схемы (плечевой коэффициент).

Величина определяется соотношением углов фазовых сдви­гов комплексных сопротивлений смежных плеч.

Фазовые соотношения смежных плеч моста:

а – синфазные, б – квадратурные, в – противофазные.

 

 

 

 

С этой точки зрения мостовые схемы разделяются на

· синфазные, для которых и ;

· квадратурные и ;

· противофазные и .

Для включения индуктивных датчиков размера на практике применяются только синфазные и квадратурные мостовые схемы, и, следовательно, .

Выражение записано для модуля выходного напряжения без учета фазового сдвига. Из этого выражения нетрудно видеть, что стабильность выходного напряжения зависит от стабиль­ности напряжения питания и частоты питания (в последнем случае при изменении частоты изменяется ). При этом

, .

Поскольку в общем виде первое условие равновесия мостовой схемы переменного тока можно записать

,

то функция преобразования уравновешенной мостовой схемы (при одном уравновешивающем плече ) будет иметь вид

и .

При включении в мостовую схему дифференциального индуктив­ного датчика в выражения и следует подставлять ве­личину , где – относительное изменение полного сопро­тивления обмотки половины дифференциального датчика при вход­ном измеряемом перемещении .

Частотная схема включения

Для преобразования индуктивно­сти датчика в частоту переменного тока применяют генераторные схемы (см. рис. 4.8.4). Основой генераторной схемы является колебатель­ный контур, составленный индуктивностью датчика и постоян­ной емкостью .

Контур включен в схему электронного генера­тора Г, который генерирует переменное напряжение с частотой, рав­ной собственной частоте колебательного контура.

При изменении индуктивности датчика изменяется частота на выходе генератора, измеряемая частотомером. Частота генератора зависит в основном от индуктивности датчика и не зависит от его сопротивления по­терь (это верно только в первом приближении). Поскольку сопро­тивление потерь датчика обычно в большой степени зависит от различных внешних факторов, то избавление от его влияния на ре­зультаты измерения повышает точность измерений.

Генераторная схема может применяться для включения, как не­дифференциальных датчиков, так и дифференциальных. В последнем случае имеется два колебательных кон­тура, составленных каждой обмоткой датчика и конденсаторами и , и два генератора Г1 и Г2. Частоты с обоих генераторов и поступают на смеситель, который выделяет разностную частоту. Эта разностная частота, в свою очередь, измеряется частотомером. Подбором емкостей и генераторы настраиваются так, чтобы в одном из крайних положений измерительного стержня дат­чика выполнялось условие и . Тогда показания часто­томера будут пропорциональны величине смещения измерительного стержня из крайнего положения.

Чувствительность преобразования частотной схемы включения

и относительная чувствительность

.

Сравнение чувствительности преобразования частотной схемы с чувствительностью других описанных схем показывает, что ее отно­сительная чувствительность в 2 раза ниже, как это следует из фор­мулы.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 411; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.112.1 (0.028 с.)