Кислородный эффект. Радисенсибилизаторы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кислородный эффект. Радисенсибилизаторы.



 

Под кислородным эффектом в радиобиологии понимают явление усиления лучевого поражения при повышенной концентрации кислорода по сравнению с облучением в анаэробных условиях. Кислородный эффект – универсальное явление, которое проявляется исключительно по всем показателям лучевого поражения на всех уровнях организации живых систем. Проявление кислородного эффекта обнаружено как в модельных системах с макромолекулами, так в экспериментах с клеточными культурами, изолированными тканями, организмами, популяциями. Впервые это явление было описано К. Шварцем 1909 году. Однако, детальные исследования роли кислорода в проявлении радиобиологических эффектов начались с 50 гг. 20 века. А. Дауди и сотр. (1950) показали, что в условиях гипоксии имеет место увеличение выживаемости летально облученных рентгеновскими лучами крыс (табл.1). Как видно, снижение в воздухе концентрации кислорода до 5 % приводит к уменьшению количества погибших животных при облучении их высокими дозами рентгеновского излучения.

Таблица 1

Влияние гипоксии на выживаемость облученных крыс

 

Доза облучения, Гр Количество выживших животных, %
Воздух (20 % О2) Гипоксия (5 % О2)
     
     
     
     
     

 

 

Как видно, кислород является эффективным радиомодификатором, он обладает радиосенсибилизирующим эффектом. Количественным выражением повышения радиочувствительности в присутствии кислорода является коэффициент кислородного усиления (ККУ). Значение этого коэффициента показывает, во сколько раз происходит увеличение радиочувствительности (снижение радиоустойчивости) живых обьектов в кислородной среде по сравнению с облучением их бескислородных условиях. Например, при облучении в анаэробных условиях суспензии бактерий значение LD50 = 1000 Гр. При облучении этого вида бактерий в среде с содержанием кислорода LD50 для них составила всего 500 Гр. Коэффициент кисородного усиления в этом случае будет равен двум.

В 1953 году Г.Грей сделал вывод об универсальном проявлении кислородного эффекта и о зависимости радиочувствительности облучаемых объектов от концентрации кислорода в облучаемой среде. На рис.1 представлена кривая зависимости кислородного эффекта от концентрации кислорода. Как видно, при высокой концентрациях кислорода в облучаемой среде, значение ККУ = 3. Как известно, в атмосферном воздухе содержится около 20 % кислорода, что соответствует его парциальному давлению равному примерно 160 мм.рт.ст.

 

Рис.1. Зависимость радиочувствительности живых систем от содержания кислорода в среде облучения

 

Видно, что при таких значениях давления и концентрации кислорода ККУ имеет максимальное значение и, соответственно, живые организмы характеризуются наибольшей радиочувствительностью. Уменьшение значения ККУ от 3 до 2 происходит при снижении парциального давления кислорода от 50 до 5 мм.рт.ст. (7 – 0,5 % содержание кислорода в воздухе). При парциальном давлении кислорода ниже 5 мм.рт. ст. значение ККУ снижается от 2 до единицы в бескислородной среде.

Экспериментально показано, что участие кислорода в реализации в реализации возникающих потенциальных повреждений происходит во время облучения. Так, введение кислорода в суспензию бактерий, культивируемых в условиях аноксии за 20 мс до облучения, усиливает их поражение. Добавление кислорода через 10 мс после облучения не изменяет поражающее действие ионизирующего излучения. Таким образом, сенсибилизирующее действие кислорода при облучении клеток проявляется только тогда, когда он присутствует в тканях в момент облучения.

В настоящее время нет четких представлений о механизме сенсибилизирующего действия кислорода при облучении. Наиболее общепринятой считается точка зрения о том, что молекулы кислорода, обладая электронноакцепторными свойствами, активно взаимодействуют с образующимися свободными радикалами, в т. ч. и с радикалами биологических молекул. Вследствие этого, происходит появление новых активных свободных радикалов и фиксация возникших в результате облучения потенциальных повреждений молекул. Фиксация повреждений заключается в стабилизации поврежденной структуры молекулы, что делает их недоступными или труднодоступными для системы репарации. Время жизни таких кислородозависимых повреждений может быть длительным. Например, в макромолекулах такие повреждения сохраняются в течение нескольких часов. Представления о возникновении скрытых (потенциальных) повреждений в структурах живых систем при облучении сформировались в 60 –ых годах в результате исследований Т. Альпера, Л.Эйдуса, П. Александера. В соответствии с этими представлениями, при облучении молекул определенная часть возникших повреждений в отсутствии кислорода не проявляются, т.е. не приводят к потере их активности.

Как известно, все процессы репарации молекул требуют затраты энергии, в первую очередь, энергии АТФ. Синтез большей части молекул АТФ непосредственно зависит от присутствия свободного кислорода в клетках. Поэтому, присутствие кислорода в тканях после облучения способствует эффективности репарационных процессов. Показано, что эффективность восстановления потенциально летальных и сублетальных повреждений прямо пропорционально концентрации кислорода в клетках.

Таким образом, кислород при лучевом поражении живых систем играет двойственную роль. С одной стороны, он усиливает первичное поражение молекул, с другой - способствует пострадиационному восстановлению этих повреждений.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 333; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.93.207 (0.006 с.)