Радиочувствительность тканей, органов млекопитающих и человека. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Радиочувствительность тканей, органов млекопитающих и человека.



Радиационные синдромы.

 

Неодинаковой радиочувствительностью характеризуются не только различные особи одного вида, но разные клетки, ткани, органы, системы органов одного и того же организма. Закономерности протекания биологического эффекта (поражения) при облучении определяются двумя группами факторов. Во-первых, величиной поглощенной организмом эквивалентной дозы и ее распределением в пространстве и времени, во- вторых радиочувствительностью тканей, органов и систем органов, имеющих существенное значение для функционирования организма. Сочетание этих факторов определяет специфику и время проявления эффектов облучения.

Наиболее полно изучена картина поражения ионизирующими излучениями представителей млекопитающих, в т. ч и человека. Как уже отмечалось, ионизирующее излучение являются специфическим, не имеющим аналогов, физическим воздействием на живые системы. В первую очередь специфичность этого облучения определяется высокой проникающей способностью большинства видов ионизирующих излучений. Так, в результате тотального облучения организма рентгеновским, g-, b-, тормозным, нейтронным, протонным излучениями ни один участок организма не остается не облученным. Только в случае a-облучения организм может получить локальное облучение.

В большинстве случаев при облучении животных и человека, возникают изменения в организме, которых принято называть общим термином – лучевая болезнь. Под лучевой болезнью человека и других млекопитающих понимают определенный комплекс проявления поражающего действия ионизирующего излучения на организм. Многообразие лучевых реакций организма зависит от способа облучения (общее, местное, внешнее или внутреннее от инкорпорированных радионуклидов), временного фактора облучения (однократное, повторное, пролонгированное, хроническое). Интенсивность проявлений эффектов облучения зависит также от пространственного фактора, т.е. от размера облученной поверхности и распределения поглощенной дозы в живом организме. По этому фактору, облучение организма может быть тотальным, локальным, равномерным, неравномерным. Самый типичный пример радиационного поражения млекопитающих и человека – это острая лучевая болезнь (ОЛБ). ОЛБ проявляется при однократном тотальном внешнем облучении при эквивалентных дозах более 1 Зв. Для понимания основных закономерностей проявлений лучевого поражения необходимо внести понятие «критический орган». Термином «критический орган» в радиобиологии обозначают жизненно важные ткани, органы или системы органов, у которых нарушается структура и функции при облучении в определенном интервале доз, что обуславливает болезнь или гибель организма через определенное время после облучения. Между величиной поглощенной дозы и средней продолжительностью жизни облученного организма существует строгая зависимость, определяемая различной радиочувствительностью критических органов. Рассмотрим зависимость средней продолжительности жизни облученного организма от величины поглощенной дозы. На рисунке 1 представлены данные экспериментов, определяющих эту зависимость при облучении мышей рентгеновским излучением. Как видно, повышение величины поглощенной дозы от 0 до 10 Гр приводит к снижению продолжительности жизни мышей до нескольких суток. При дальнейшем увеличении дозы облучения (10 –100 Гр) средняя продолжительность жизни животных не изменяется. Облученные в этом интервале доз мыши живут 1- 5 суток. Последующее увеличение поглощенной дозы до 1000 Гр приводит к резкому сокращению продолжительности жизни облученных мышей. В этом интервале доз этот показатель снижается от нескольких суток до нескольких минут. Аналогичные данные о зависимости продолжительности жизни от дозы облучения получены в опытах с многимии животными. Показанный на рисунке специфический характер зависимости продолжительности жизни от дозы облучения определяется радиочувствительностью основных критических органов у млекопитающих: красного костного мозга, желудочно-кишечного тракта, центральной нервной системы. Необратимое поражение этих критических органов обуславливают проявление основных клинических синдромов при облучении человека и млекопитающих: костно-мозгового (кроветворного), желудочно-кишечного, церебрального. Из рисунка 1 видно, что в интервалах доз 0 – 10 Гр гибель мышей обусловлен поражением кроветворной системы, в интервале 10 – 100 Гр- поражением желудочно- кишечного тракта. Быстрая гибель животных при дозах 100 –1000 Гр происходит вследствие поражения центральной нервной системы.

 

Рис. 1. Зависимость средней продолжительности жизни мышей от величины поглощенной дозы при тотальном однократном облучении рентгеновскими лучами.

Ось ординат – поглощенная доза, Гр; ось абсцисс - средняя продолжительность жизни облученных особей, сут.

 

 

Ступенчатый характер кривой, связанный с нарушением структуры и функционирования критических органов получен для многих животных, в т.ч. и для обезьян. Эти экспериментальные результаты с определеенной долей вероятности можно экстраполировать и на человека (рис. 2). Как видно, при дозах облучения в интервале 4-10 Гр средняя продолжительность жизни человека не превышает 40 суток. Гибель облученных при таких дозах происходит вследствие дестабилизации процессов кроветворения (костно-мозговой, кроветворный синдром). При больших дозах (10 –30 Гр) гибель облученных животных происходит вследствие поражения желудочно- кишечного тракта (желудочно-кишечный синдром) и продолжительность жизни особей не превышает 10 суток. При очень высоких дозах (>30 Гр) гибель облучения, продолжительность жизни человека колеблется от нескольких часов до 2 суток и летальный эффект обуславливается поражением центральной нервной системы (церебральный синдром).

 

 

Рис. 2. Зависимость средней продолжительности жизни обезьян (человека) от величины поглощенной дозы при тотальном однократном облучении рентгеновскими лучами.

Ось ординат – поглощенная доза, ось абсцисс - средняя продолжительность жизни облученных особей

 

Ведущая роль этих критических органов в гибели облученных животных, при облучении в соответствуещем интервале доз, показана на многочисленных экспериментах. Так, если экранировать участок костного мозга при тотальном облучении или пересадить смертельно облученным животным костный мозг необлученных животных, можно предотвратить или снизить количество погибших животных в при дозах до 10 Гр. Такие эксперименты проведены на различных животных и они свидетельствуют о том, что гибель особей в этом диапазоне доз обусловлен именно поражением системы кроветворения. О кишечном механизме смерти в диапазоне доз 10 - 30 Гр свидетельствуют эксперименты с локальным облучением выведенного наружу кишечника. В этом случае гибель животных наступает в такие же сроки, как и при тотальном облучении такими же дозами. При локальном облучении головы животных дозами больше 100 Гр, гибель их наступает в первые сутки и часы после облучения, сопровождаясь судорогами, что указывает на поражение центральной нервной системы.

Таким образом, при облучении животных и человека проявляется четкая зависимость степени выраженности радиационных синдромов от поглощенной дозы облучения. Характер такой зависимости обусловлен различиями, имеющимися в системах клеточного обновления соответствующих критических органов.

Устойчивое состояние динамического равновесия любой клеточной популяции в живом организме поддерживается системой клеточного обновления. Потеря любой клетки (вследствие гибели или миграции) в системе восполняется появлением новых клеток, что обеспечивает неизменность функций этой ткани или органа. Различные типы клеток характеризуются неодинаковой продолжительностью жизненного цикла, и соответственно, они различаются и по темпам обновления. В живом организме ежеминутно отмирают сотни тысяч отслуживших свой срок клеток и появляются взамен их новые клетки, которые через определенное время тоже отомрут, заменяясь другим поколением клеток. Такое устойчивое состояние динамического равновесия между гибелью клеток и появлением новых клеток является необходимым условием поддержания жизнеспособности организма. Любой взрослый, нормально функционирующий организм находится в состоянии строго сбалансированного клеточного обновления, которое имеет место в большинстве тканей и органов. Нарушение этого состояния, т.е. клеточного гомеостаза, приводит к гибели организма. Такие процессы, приводящие к нарушению клеточного гомеостаза, и происходят при действии ионизирующей радиации на животные организмы. В первую очередь, гибель млекопитающих при облучении происходит вследствие нарушения функционирования двух самообновляющихся клеточных систем – кроветворной и желудочно- кишечной. При очень высоких дозах облучения, гибель животных наступает вследствие интерфазной гибели клеток центральной нервной системы, которые у взрослых особей практически не возобновляются.

 

Кроветворный синдром. Красный костный мозг - типичный пример системы клеточного обновления.

 

Красный костный мозг характеризуется высокой радиочувствительностью и поэтому поражение системы кроветворения в той или иной степени наблюдается при облучении даже в относительно невысоких дозах. На примере красного костного мозга рассмотрим общие принципы функционирования системы клеточного обновления, которые можно экстраполировать и на другие самообновляющиеся системы клеток.

Как известно, основная функция красного костного мозга – продукция дифференцированных зрелых клеток крови – эритроцитов, лейкоцитов, лимфоцитов, тромбоцитов. Потеря любой из этих клеток в организме, восполняется образованием в костном мозге новой клетки. В системе клеточного обновления млекопитающих условно можно выделить несколько типов клеток, различающихся по степени зрелости и дифференцированности, так называемых клеточных пулов (рис. 3). Предшественниками клеток крови являются молодые недифференцированные клетки красного костного мозга – стволовые (клоногенные) клетки. Эти клетки способны постоянно делиться, и обеспечивать поступление новых клеток в кровь. Пройдя одно или несколько делений, стволовая клетка дифференцируется, созревает и превращается в какую-либо функционально активную клетку. Деление, дифференцировка, созревание различных типов клеток происходить с такой скоростью, чтобы поддерживать определенное количество тех или иных клеточных элементов в периферической крови. Скорость обновления клеток может варьировать в определенных пределах, в зависимости от физиологического состояния организма. Например, скорость обновления клеток крови повышается при воспалительных процессах.

 

 

Клеточные пулы  
Костный мозг Кровь  
Стволовая клетка Делящиеся и созревающие клетки Созревающие клетки Функциональные клетки
       
         

 

Рис.3. Схематичное изображение системы обновления клеток крови в организме млекопитающих

 

Под действием ионизирующих излучений происходят резкие нарушения динамического равновесия между отдельными пулами, что приводит к тяжелым функциональным расстройствам и, в конечном счете, может привести к гибели организма. Нарушение клеточного гомеостаза при этом происходит вследствие временной задержки деления клеток, репродуктивной, и интерфазной гибели молодых недифференцированных клеток, изменения продолжительности процессов клеточного созревания, снижения времени жизни зрелых клеток. В результате этих процессов первые три пула начинают опустошаться сразу в ближайшие часы после облучения. Количество зрелых клеток начинает снижаться значительно позднее, когда естественная убыль их перестает восполняться из-за опустошения соответствующих пулов. В соответствии с правилом Бергонье –Трибондо, наиболее высокой радиочувствительностью отличаются молодые, делящиеся клетки. Так показано, что при дозе 6 – 7 Гр электромагнитного ионизирующего излучения, пролиферативную активность сохраняет всего 2-3 стволовых клеток из каждой тысячи клеток красного костного мозга. В результате облучения происходит подавление процесса образования новых клеток и опустошение пулов различных клеточных элементов в соответствии со временем их жизни.

Опустошение костного мозга начинается сразу после облучения и продолжается до некоторого минимума, после чего число клеток начинает повышаться вследствие регенерации выживших клеток. Относительное количество выживших клеток, продолжительность опустошения клеточных пулов, интенсивность регенерационных процессов зависят от дозы облучения. На рисунке 4 показана динамика изменения выживших клеток при облучении мышей при Д37. Как видно, при такой дозе облучения на 6-8 сутки в организме остается всего около 10 % стволовых клеток. Через 10 суток после облучения число клеток начинает увеличиваться вследствие размножения выживших клеток. На 16 сутки количество стволовых клеток составляет уже 70 % от числа стволовых клеток необлученного организма.

 

Рис.4. Изменение числа стволовых клеток красного костного мозга после облучения мышей при дозе равной Д 37.

Ось абсцисс – время после облучения, ось ординат – доля живых клеток.

 

 

Характер изменения состава клеток в периферической крови облученного организма определяется временем жизни и радиоустойчивостью зрелых клеток крови. Численность наиболее долго живущих клеток крови- эритроцитов (время жизни более 3 месяцев) снижается очень медленно (рис. 5). Скорость уменьшения числа эритроцитов в периферической крови составляет 1 % в сутки от их общего количества (@ 25×107 клеток). Такая скорость уменьшения этих клеток обуславливается, в основном, естественной убылью эритроцитов из крови, так эти безьядерные клетки характеризуются относительно высокой радиоустойчивостью. Резкое уменьшение числа гранулоцитов и агронулоцитов в крови после облучения связано с высокой радиочувствительностью этих клеток. При относительно небольших дозах облучения (3-4 Зв) погибают не только молодые, слабодифференцированные клетки в костном мозге, лимфоидной ткани, селезенке, но и зрелые клетки лейкоцитов в составе периферической крови. Как видно из рисунка, через 4-5 суток после облучения, в крови определяется всего около 20 % от общего числа лейкоцитов. Особенно низкой устойчивостью к ионизирующему излучению обладают лимфоциты, а нейтрофилы (гранулоциты) характеризуются относительно высокой устойчивостью. Относительно высокая устойчивость характерна и для тромбоцитов. Экспериментальные кривые, характеризующие обновление тромбоцитов и нейтрофилов, отражают короткую продолжительность жизни этих клеток.

 

Рис. 5. Изменение количества клеточных элементов периферической крови после облучения мышей рентгеновским излучением в дозе равной Д 37.

1- эритроциты; 2 – лейкоциты; 3 – тромбоциты; 4 – лимфоциты;

5 – нейтрофилы

Ось абсцисс – время после облучения, ось ординат – доля живых клеток.

 

 

Таким образом, основная причина опустошения пула зрелых клеток крови, происходящего в ранние сроки после облучения, заключается в резком торможении процессов клеточного деления в красном костном мозге, селезенке, и гибели определенной части радиочувствительных клеток в периферической крови.

При дозах облучения до 10 Гр гибель мышей наступает с в интервале 6 – 25 суток. Большая часть животных погибает на 10- 12 сутки после облучения, вследствие патологических процессов, вызванных тромбоцитопенией, гранулопенией, агронулопенией. Основными причинами гибели животных являются инфекционные и геммарогические процессы (см. лучевую болезнь). Животные, пережившие этот период, приобретают большие шансы на выживание, т.к. после этого срока функциональный пул крови начинает наполняться за счет деления выживших клеток.

 

Желудочно-кишечный синдром

Причиной гибели млекопитающих животных и человека, при облучении в дозах превышающих 10 Зв, является поражение желудочно-кишечного тракта. Наиболее радиочувствительным органом в системе желудочно-кишечного тракта является тонкий кишечник. После облучения наблюдается опустошение клеток ворсинок и крипт кишечника. Протекающие при этом процессы аналогичны процессам, рассмотренным выше для клеток крови и красного костного мозга, однако, с другими количественными характеристиками. Дегенеративная и регенеративная фазы у клеток кишечного тракта более кратковременны, чем у клеток крови и красного костного мозга. Стволовые клетки желудочно-кишечного тракта дифференцируются и созревают значительно быстрее, чем клетки крови. Так, если среднее время созревания для разных типов клеток крови составляет 3 – 8 суток, то для клеток желудочно-кишечного тракта - всего 42 – 55 часов. При этом стволовые клетки кишечника более устойчивы к облучению, чем стволовые клетки красного костного мозга. Среднелетальные дозы для первой группы клеток составляют D37 = 4-6 Гр, для второй группы - D37 = 1 Гр. В радиационном поражении эпителия кишечника значительную роль играет и интерфазная гибель клеток сразу после облучения. Поэтому опустошение клеток кишечника происходит очень быстро, у мышей, например, крипты тонкого кишечника, опустошаются за 1 – 2 сутки, ворсинки – за 3 – 4 суток. В течение этого срока наблюдается гибель большинства животных при выраженных проявлениях желудочно-кишечного синдрома. При облучении в меньших дозах, вызывающих кроветворный синдром, происходит интенсивное восстановление клеток кишечника, которое полностью заканчивается к 5-6 суткам после облучения.

Таким образом, гибель животных при дозах, вызывающих желудочно-кишечный синдром, определяется в первую очередь, опустошением ворсинок и крипт кишечника. Это приводит к нарушению функционирования пищеварительной и выделительной систем, нарушению баланса жидкостей в организме. Все эти процессы сопровождаются поражением кровеносных сосудов, кровоизлияниями и развитием инфекционных процессов. Определить, какой из этих процессов вносит наиболее существенный вклад в летальный исход животного, практически невозможно. Опыты с облучением животных в стерильных условиях свидетельствуют о важной роли инфекционных процессов в гибели животных.

 

Церебральный синдром

Действие ионизирующих излучений на клетки центральной нервной системы принципиально отличается от их действия на клетки красного костного мозга и кишечника. При облучении центральной нервной системы практически отсутствуют потери за счет репродуктивной гибели клеток. Как известно, нервная ткань, в основном, состоит из высокодифференцированных клеток, не способных к делению. Соответственно, нервные клетки характеризуются и высокой радиоустойчивостью. Интерфазная гибель нейронов происходит при очень высоких дозах излучения, порядка нескольких сотен Грей. Причем, неизвестно, является ли причиной гибели непосредственное повреждение нервных клеток вследствие облучения, или же гибель клеток опосредована повреждением других систем, в первую очередь, кровеснабжающих сосудов.

Таким образом, в радиобиологии человека и животных, выделяют три основных критических органа (систем), ответственных за гибель организма при однократном тотальном облучении. Однако, при других способах и условиях облучения, критическим органом может стать любой орган или любая ткань, поглотившие определенную дозу ионизирующего излучения. С этих позиций рассмотрим радиочувствительность основных органов человека.

 

Радиочувстительность отдельных тканей, органов человека

 

Кожный покров. Клетки кожи активно обновляются и поэтому покровные ткани человека очень чувствительны к действию радиации. Однако, высокая пролифирирующая активность стволовых клеток кожи обеспечивает их высокую регенеративную способность и соответственно, эпидермальные клетки хорошо восстанавливают сублетальные повреждения. Так, значение Dq для этих клеток составляет около 5 Гр, тогда как для кроветворных клеток она равняется всего 0,5 Гр. При однократном облучении рентгеновским излучением кожа человека переносит без видимых симптомов поражения дозы до10 Гр. При более высоких дозах облучения возникают видимые повреждения - дерматиты и язвенные поражения кожи.

Органы зрения. Облучение органов зрения млекопитающих относительно невысокими дозами (до 3 Гр) приводит к возникновению воспалительных процессов в склере и коньюктиве. Более высокие дозы (3-10 Гр) вызывают катарактогенные процессы. Катаракта (помутнение хрусталика глаза) у человека наступает при дозах больше 6 Гр. Особенно опасны в этом отношении нейтронное облучение, эффективность которого в несколько раз выше, чем у рентгеновского и g-излучений. Помутнение хрусталика глаза при облучении является первичным диагностическим признаком для определения поглощенной дозы. Причины образования катаракты при облучении полностью не выяснены.

Пищеварительная система. Как отмечалось выше, наиболее радиочувствительным органом этой системы является тонкий кишечник. Поражение клеток тонкого кишечника, в первую очередь, и обуславливает проявление желудочно-кишечного синдрома. Остальные органы пищеварительной системы по убыванию радиочувствительности располагаются в следующем порядке: полость рта, язык, пищевод, желудок, прямая и ободочная кишки, поджелудочная железа, печень. Как видно, наиболее устойчивым органом пищеварительной системы является печень. Так, при однократном локальном облучении печени крыс в дозах до 15 Гр, в клетках не удается обнаружить никаких морфологических изменений. По данным ряда исследователей, значение D0 для клеток печени крыс составляет около 90 Гр.

Сердечно-сосудистая система. Влияние ионизирующего излучения на сердечно-сосудистую систему мало изучено. Показано, что морфологические изменения в миокарде обнаруживаются при однократном рентгеновском облучении в дозах 5 - 10 Гр. При дозах 15 -20 Гр происходит образование тромбов в сосудах сердца. Кровеносные сосуды более радиочувствительны, чем мышечная ткань сердца. Даже при относительно невысоких дозах электромагнитного излучения наблюдается эритема кожи, вследствие поражения кровеносных сосудов. Показано, что кровеносные сосуды кожи при дозах 4-10 Гр теряют способность к образованию капилляров. Высокую радиочувствительность кровеносных сосудов обуславливается повреждением наружного слоя сосудистой стенки из-за изменений в структуре белка коллагена.

Органы дыхания. Легкие взрослых особей млекопитающих, в т.ч. и человека - стабильный орган с низкой пролиферативной активностью клеток. Поэтому этот орган является относительно радиоустойчивым. Так, при локальном облучении грудной клетки в относительно высоких дозах (10-20 Гр) мыши погибают через 100 -150 суток от легочных пневмонитов. LD50/160 для мышей при однократном тотальном облучении составила 13 Гр, при 20-ти кратном фракционированном облучении этот показатель возрастает до 45 Гр. Морфологические изменения в тканях легких при облучении в дозе 20 Гр выявляются через 3 месяца после облучения. Длительность проявления радиационных повреждений обуславливается слабым клеточным обновлением в легочных тканях.

Эндокринная система. Железы внутренней секреции состоят из функциональных высокодифференцированных клеток, и соответственно, они характеризуются высокой радиорезистентностью. В то же время, способность к физиологической регенерации этих клеток очень низкая. При тотальном облучении организма, регистрируются нарушения баланса гормонов, в первую очередь, изменяется содержание гормонов щитовидной железы, надпочечников и гонад. Однако, невозможно определить, являются ли эти изменения результатом непосредственного повреждения эндокринных желез или же опосредованно отражают воздействие излучений на другие системы органов и на весь организм в целом.

Центральная нервная система. Клетки нервной системы характеризуются высокой устойчивостью к облучению. Реакции нервной системы на облучение проявляются при очень высоких дозах. Так, неврологические симптомы у крыс наблюдаются через 4-5 суток после облучения головного мозга пучком протонов (диаметр пучка 3 мм) с энергией 200 МэВ при дозе 200 Гр. При меньших дозах (10 -150 Гр) дегенеративные морфологические изменения развиваются в течение более длительного промежутка времени. При увеличении диаметра протонного пучка до 5 мм морфологические изменения в ткани мозга более выражены и проявляются быстрее. Экспериментальные факты свидетельствуют об опосредованном механизме радиационного поражения нервной системы, которая обуславливается, в первую очередь, нарушением кровоснабжения ткани вследствие повреждения кровеносных сосудов. Необходимо отметить, что функциональные изменения в центральной нервной системе, например, изменения условных рефлексов, развиваются уже при дозах 0,1 - 1 Гр, но они не определяют конечного исхода лучевого поражения организма.

Органы выделения. Количество экспериментальных данных о действии ионизирующего излучения на органы выделения очень мало. Наиболее изученными в этом отношении являются почки, которые относятся к радиорезистентным органам. В экспериментах на различных животных показано, что морфологические и функциональные изменения в них появляются только при дозах более 20 Гр. Эксперименты Т. Филлипса на мышах показали, что при локальном облучении в области почек, LD50/180 составила 24 Гр. Через 16 месяцев этот показатель снизился до 13 Гр. При этом в канальцах и клубочках выявленются дегенеративные изменения, приводящие к почечной недостаточности. Поэтому, при лучевой терапии опухолей брюшной полости, поражение почек является лимитирующим фактором. По некоторым данным, облучение обеих почек в течение 5 недель в дозах выше 30 Гр, может вызвать необратимый хронический нефрит, приводящий к летальному исходу.

Органы размножения. Стволовые клетки, из которых образуются мужские гаметы (сперматозоиды) у млекопитающих, характеризуются крайне высокой радичувствительностью. Вследствие у большинства млекопитающих животных и человека уже при дозах 0,5-1 Гр происходит клеточное опустошение семенников. При поглощенной дозе 2-4 Гр наступает полная стерильность мужского организма. Однако, зрелые сперматозоиды, характеризуются очень высокими показателями радиоустойчивости. В опытах на мышах и крысах показано, что даже при облучении в дозах 1000 Гр, структура и подвижность сперматозоидов не изменяется и соответственно, они сохраняют способность к оплодотворению яйцеклетки. Наступающая после облучения относительно невысокими дозами стерильность самцов носит временный характер и ликвидируется по мере восстановления сперматогенеза вследствие размножения сохранившихся жизнеспособных сперматогониев.

Стерильность самок млекопитающих наступает при более высоких дозах, чем у самцов (у крыс –15-20 Гр) и как правило, она необратима. Необратимость стерилизации связано с тем, что образование женских половых клеток у млекопитющих заканчивается в ранние сроки после рождения. Как известно, у взрослого организма яичники не способны к активной регенерации. Поэтому, если при облучении погибли все потенциальные яйцеклетки, то плодовитость организма утрачивается необратимо.

 

Контрольные вопросы и задания.

1. Опишите схему проведения опытов с целью определения значений LD50 при облучении рентгеновскими лучами:

а) мышей

б) плодовых мушек (дрозофилл)

в) дрожжевых клеток

г) вируса табачной мозаики

 

2. Существует закономерность: чем выше в эволюционном отношении вид, тем выше радиочувствительность особей этоговида. Это означает, что представители высокоорганизованных групп живых организмов менее радиоустойчивы, чем особи, принадлещащие к группам с более простой организацией. Как Вы объясните эту закономерность?

3. Особи одного и того же вида живых организмов характеризуются неодинаковой радиоустойчивостью. Выскажите Ваши соображения для объяснения этого факта.

4. Как Вы понимаете термин «Лучевая болезнь человека»? От каких факторов зависит проявление лучевой болезни.

5. При радиационной аварии несколько человек получили различные дозы ионизирующей радиации. Индивидуальная доза для каждого человека неизвестна. По показаниям стационарного дозиметра видно, что индивидуальная доза у разных облученных людей может составлять от 0,1 Зв до 5 Зв. Как можно определить значение этого показателя для каждого облученного через 1- 2 сутки после облучения?

6. В течение 7-10 суток после облучения человека происходит резкое снижение числа лейкоцитов и лимфоцитов в перефирической крови. В то же время, количество эритроцитов в крови изменяется незначительно. Дайте объяснение этим фактам.

7. Наиболее радиочувствительным органом у млекопитающих является красный костный мозг, наиболее радиоустойчивой – нервная ткань. Почему?

8. Какими причинами обуславливается проявление:

а) желудочно –кишечного синдрома;

б) церебрального синдрома

9. Перечислите основные ткани, органы по повышению их радиочувствительности, начиная с менее радиочувствительных.

10. Какими факторами обуславливается радичувствительность тканей, органов, систем органов, организмов?

11. Мышей облучали гамма-излучением с мощностью поглощенной дозы 1 Гр/мин в течение одного часа. В каком временном интервале погибнет большая часть облученных животных?

 

 

Лекция 9 а. Действие ионизирующих излучений на млекопитающих и человека.

 

Как отмечалось, радиочувствительность млекопитающих, в т.ч. и человека, определяется в первую очередь, радиочувствительностью красного костного мозга, так как именно дегенерация кроветворной системы при тотальном облучении приводит к гибели организма. Поэтому количественным критерием радиочувствительности служат эквивалентные дозы, при которых животные погибают вследствие проявления костно-мозгового синдрома. Количественные характеристики радиочувствительности животных можно получить построив кривые выживания. Для построения кривой выживания, на оси абцисс отмечают экспозиционную, поглощенную или эквивалентную дозу ионизирующего излучения. На оси ординат отмечают количество погибших животных в течение 30 суток, выраженное в процентах. Кривые выживания для млекопитающих имеют S - образную форму. Такая форма кривой выживания обуславливается тем, что гибель отдельных особей начинается при достижении определенной (минимально летальной) дозы. При достижении определенной (абсолютно летальной) дозы погибают все облученные животные (Рис. 1.). Как видно из рисунка, при облучении рентегновскими лучами, гибель мышей начинается при поглощенной дозе 4 Гр. В интервале доз 4 -6 Гр, количество погибших животных повышается незначительно.

 

 

Рис. 1. Кривая выживания мышей при тотальном рентгеновском облучении (каждая точка представлена усредненными данными для 20 животных).

 

 

Основное количество особей погибает при облучении в интервале доз 6-8 Гр. Как видно, построив кривую выживания, можно оценить дозы, вызывающие гибель определенного количества животных. Наиболее употребляемыми на практике являются значения LD30 и LD50. Из рисунка видно, что имеется значительный разброс показателя выживаемости отдельных особей при облучении в одинаковых дозах. Этот факт свидетельствует о вариабельности признака индивидуальной радиочувствительности у экспериментальных животных. О значительных различиях в индивидуальной чувствительности животных свидетельствует также наличие таких критериев как LD30, LD50, т.е. определеныые дозы облучения приводят гибели 30, 50 % облученных особей. Необходимо отметить, что индивидуальные различия в радиоустойчивости наблюдаются не только у представителей одного вида, но и у животных одной чистой линии, где особи характеризуются идентичным генотипом.

Выживание (гибель) млекопитающих в исследуемом интервале доз определяется, в первую очередь, количеством неповрежденных стволовых клеток, ответственных за обновление клеток крови.

Радиочувствительность животных зависит также и от половых, возрастных различий особей. Как правило, самки млекопитающих более устойчивы к облучению, чем мужские особи. На рис. 2. приведены данные об изменении значений LD50 у мышей в течение жизни. Как видно, радиочувствительность животных в первые недели после рождения высокая, по мере роста и развития мышей она снижается. Наиболее радиоустойчивы взрослые половозрелые мыши в возрасте 40 - 70 недель. Затем радиоустойчивость особей снижается и к концу жизни этот показатель достигает уровня новорожденных животных.

 

Рис. 2. Изменения радиочувствительности мышей одной линии в зависимости от их возраста.

 

Таким образом, степень устойчивости животных к ионизирующему излучению сильно колеблется в пределах одного вида, и радиочувствительность определяется многими факторами (возраст, пол, физиологическое состояние организма в момент и после облучения). Поглощение млекопитающими доз излучения до 10 Гр, вызывает появление многообразных симптомов лучевой болезни. Проявления симптомов лучевой болезни экспериментально изучено на представителях различных видов млекопитающих (мыши, крысы, собаки, овцы, козы, лошади, обезьяны).

 

Лучевая болезнь человека. Формы проявления лучевой болезни

 

Сведения о лучевой болезни человека появились после 1945 года. Наблюдения за уцелевшими жителями городов Хиросима и Нагасаки позволили получить первые данные о клинических проявлениях радиационного поражения людей. В дальнейшем проявление лучевой болезни было описано многократно у людей, получивших радиационное облучение при различных обстоятельствах. Многие случаи заболеваний людей после облучения, связаны с авариями на АЭС, на атомных подводных лодках, при облучении с медицинским целями. При облучении определенном интервале доз (1- 6 Зв), в организме возникает определенный комплекс изменений, который приводит к болезни и может вызвать его гибель человека. Этот комплекс изменений в организме, вызванный поражающим действием ионизирующего излучения, называют лучевой болезнью. Лучевая болезнь может проявлятся в многообразных формах. Формы проявления болезни человека зависят от следующих факторов: от вида ионизирующего излучения (электромагнитное или корпускулярное с различными коэффициентами качества), от способа получения облучения (общее или местное, равномерное или неравномерное, внешнее или внутреннее), от длительности облучения (однократное, многократное, пролонгированное, хроническое). Учитывая вышеперечисленные факторы, определенный комплекс клинических проявлений лучевого поражения человека, можно условно отнести к одному из нижеперичисленных трех форм:

а) острая лучевая болезнь при относительно равномерном облучении

б) острые лучевые поражения при неравномерном облучении

в) хроническая лучевая болезнь

 

 

Острая лучевая болезнь при относительно равномерном облучении

 

По степени тяжести проявления острая лучевая болезнь подразделяется на 4 категории: слабая, средняя, тяжелая, крайне тяжелая. В большинстве случаев, клинические проявления болезни обнаруживаются при поглощенных дозах рентгеновского и g-излучения более 1 Гр (Дэкв > 1 Зв). При меньших дозах клинические проявления могут отсутствовать или быстро проходят. При прогнозировании степени тяжести лучевой болезни следует ориентироваться на следующие приме



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 654; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.234.232.228 (0.173 с.)