Защита котлованов от подтопления 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Защита котлованов от подтопления



 

· Для защиты котлованов от подтопления используют следующие группы методов:

- водопонижение;

- противофильтрационные завесы;

- комбинация первых двух методов.

· Выбор той или иной группы методов зависит от:

- вида подземных вод;

- УПВ (УГВ);

- свойств грунтов;

- особенностей их напластования;

- глубины, размеров и формы котлована в плане;

- других факторов.

· Во всех случаях, какой бы способ мы не выбрали, необходимо исключить нарушение природной структуры грунта в основании, обеспечить устойчивость откосов котлована и сохранность близко расположенных зданий.

Водопонижение осуществляется с помощью:

- глубинного водопонижения;

- открытого водоотлива

1. Открытый водоотлив – наиболее простой способ. Воду откачивают насосами непосредственно из котлована. А точнее из устраиваемой на дне котлована сети канавок глубиной 0,3…0,6 м, по которым вода отводится в приямок (зумпф), откуда она и откачивается систематически насосами.

- Открытый водоотлив применяют только в малоразмываемых грунтах и породах (трещиноватые скальные породы, галька, гравий, крупные пески), а также там, где мало прямого поступления воды.

2. Глубинное водопонижение исключает просачивание подземных вод через откосы и дно котлована. Он заключается в искусственном понижении УГВ в районе котлована.

Осуществляется с помощью:

- иглофильтров;

либо - откачной воды из глубинных трубчатых колодцев (в случае большого притока воды).

Рис.14.9. Схемы глубинного водопонижения:

а – одноярусное расположение иглофиьлтров; б – то же, многоярусное; 1 – насосная станция; 2 – гибкие шланги; 3 – коллектор; 4 – иглофильтры; 5 – депрессионная воронка

Иглофильтр состоит из стальной трубы d=38…50 мм, нижнем конце имеется фильтрующее устройство, через которое производится всасывание и откачка воды. Фильтр сконструирован так, что обеспечивается невозможностью выноса частиц.

Возникающее при движении воды (от дна котлована к ИФУ) рис. 14.9 а, гидродинамическое давление способствует уплотнению грунтов а … - улучшению их структурных свойств.

 

· Легкие иглофильтровые установки (ЛИУ) служат для понижения уровня подземных вод на глубину 4…5 м в песках. При больших глубинах иглофильтры располагают в несколько ярусов (рис. 14.9. б) или применяют специальные эжекторные иглофильтры (водоструйные насосы, создающие разрежение окло фильтрующего элемента, что способствует увеличению всасывания), позволяющее понизить УГВ на глубину до 25 м.

- ЛИУ применяют в песках крупной, средней крупности и мелких

- Эжекторные иглофильтры, как более мощные применяют в пылеватых песках и супесях с kф>0,1 м/сут.

- при грунтах с kф<0,1 м/сут используют специальные методы водопонижения:

→ вакуумирование;

→ электроосушение.

 

Вакуумирование:

У вакуумных скважин устья герметизируются специальными тампонами. Из скважин откачивается вода и воздух, создается зона вакуума, за счет чего приток воду увеличивается.

Позволяет откачивать воду при 0,01< kф<0,1 м/сут и до 20 м глубиной.

 

Электроосушение (электроосмотическое водопонижение)

Применяют в глинистых грунтах с низкой водоотдачей

Этот способ основан на свойстве передвижения воды в глинистых грунтах под действием постоянного тока (электроосмос).

Стежки и иглофильтры размещают по периметру котлована в шахматном порядке (рис. 14.10)

На них подают напряжение U=30…60В.

Вода под действием тока перемещается от анода «+» к катоду «-», грунтовая вода поступает в иглофильтр и откачивается всасывающим насосом. Понижение воды возможно до 20 м.

За счет электроосмоса kф резко увеличивается (в десятки, а то и в сотни раз), но требуется соблюдение соответствующих правил техники безопасности.

 

Рис. 14.10. Схема электроосмотического водопонижения:

1 – иглофильтр катод; 2 – металлический стержень-анод; 3 – коллектор; 4 – депрессионная кривая

 

Создание противофильтрационных завес.

Используют:

· замораживание (естественное искусственное);

· битумизация;

· шпунтовое ограждение

Замораживание – используется свойство влажных грунтов переходить в твердое состояние при замерзании.

Рис. 14.11. Схема защиты котлована от затопления подземными водами при помощи замораживания:

1 – водоносный слой грунта; 2 – водоупорный слой грунта; 3 – замораживающая колонка; 4 – цилиндр мерзлого грунта.

- Естественное замораживание

Котлован вскрывают до УГВ, дают грунту промерзнуть на глубину 20…30см. Затем срезают верхний слой, оставляя 10…15 см. нетронутого мерзлого грунта. По мере промерзания грунта эту операцию повторяют до тех пор пока не будет достигнута проектная отметка дна котлована. За счет большой продолжительности Метод эффективен в географических зонах с соответствующим климатом.

- Искусственное замораживание (рис. 14.11)

Применяют при разработке значительных по объему котлованов в водонасыщенном грунте.

Способ заключатся в создании по периметру котлована льдогрунтовой стенки (до водоупора) t=-15…-20۫С.

За счет циркуляции раствора амиака по нагруженным с шагом 0,9…1,5 м в грунт трубам, образуется цилиндры мерзлого грунта, которые смыкаются между собой, образуя сплошную защитную стенку.

Толщина стенки замороженного грунта зависит от ее назначения:

- от притока подземных вод достаточно иметь толщину 10…15 см;

- как ограждение котлована – расчетом

Работа по замораживанию проводятся в 2 этапа.

1 этап – активное замораживание (40…70 суток) – грунт замораживают

2 этап – пассивное замораживание – поддержание грунта в замороженном состоянии в течении периода производства работ в котловане.

Следует строго следить за вертикальностью заглубления инжекторов.

Недостаток: В пылевато-глинистых грунтах происходи морозное пучение – поднятие поверхности грунта с сооружениями, находящимися в зоне влияния. Еще хуже в процессе отстаивания, т.к. сжимаемость такого грунта увеличивается, а прочность уменьшается.

Битумизация заключается в подаче (нагнетание) в грунт, обладающий трещиноватостью (скальные трещиноватые породы) с большим притоком воды, разогретого до жидкого состояния битума. За счет чего, образуется сплошная водонепроницаемая стенка.

Наряду с нагнетанием битума используют цементный раствор, или синтетические смолы.

Нагнетание в грунт какого-либо материала с целью устранения его водопроницаемости называется тампонажем.

 

ИНЖЕНЕРНЫЕ МЕТОДЫ ПРЕОБРАЗОВАНИЯ СТРОИТЕЛЬНЫХ СВОЙСТВ ОСНОВАНИЙ (ГРУНТОВ)

Общие положения

 

За последние годы наблюдается неуклонное увеличение объема строительства в сложных ИГУ. Все чаще для строительства используются площадки, сложенные слабыми грунтами – иглами, рыхлыми песками, заторфованными отложениями.

Особую проблему составляют т.н. региональные грунты, обладающие специфическими свойствами это:

- вечномерзлые грунты;

- лессовые просадочные грунты;

- набухающие;

- засоленные грунты;

- озерно-ледниковые отложения

Давайте краток рассмотрим их специфические свойства:

Особое место занимают насыпные грунты – это толщи разнородных отложений, сформировавшееся в результате техногенной деятельности человека, а также создаваемые целенаправленно отсыпкой или намывом. Насыпные грунты очень разнообразны и использовать их в качестве основания следует с очень большой осторожностью.

· Многие их этих (указанных) грунтов в природном состоянии имеют невысокую несущую способность и повышенную сжимаемость. Для других характерно существенное ухудшение механических свойств при определенных воздействиях (например, замачивание лессовых грунтов под нагрузкой, оттаивание мерзлых грунтов, рассоление засоленных грунтов и т.д.)

· Недооценка этих явлений может привести к значительным деформациям основания к его просадкам и даже к потере устойчивости основания.

Учет этих явлений подразумевает улучшение строительных свойств таких грунтов многочисленными способами направленного воздействия.

Меры преобразования строительных свойств основания можно разделить на три группы:

1. – Конструктивные методы, которые не улучшают свойства самих грунтов, а создают более благоприятные условия работы их как оснований за счет регулирования напряженного состояния и условий деформирования, когда их отрицательные свойства не могут проявиться;

2. – Уплотнение грунтов, осуществляется различными способами и направлено на уменьшение пористости грунтов, создание более плотной упаковки минеральных агрегатов;

3. – Закрепление грунтов, заключающееся в образовании прочных искусственных структурных связей между минеральными частицами.

· Выбор метода преобразования структурных свойств грунтов зависит от:

- типа грунта (его физических свойств);

- характеристика напластований;

- особенности будущего сооружения, т.е. интенсивности передаваемых им нагрузок;

- решаемых инженерных задач;

- технологических возможностей строительной организации.

* Специфические свойства региональных грунтов

1. Илы: образовались в результате выпадения в осадок мельчайших частиц породы. Илистые грунты всегда находятся в водонасыщенном состоянии

Sr~1.0

В таком грунте имеются (преобладают) водно-

– коллоидные связи;

– кристализационные связи;

2. Лессовый грунт: это тот же ил, но в высушенном состоянии (просадочные грунты). Рыхлая структура – теже структурные связи, но нет воды.

3. Вечномерзлый грунт, свойства этих грунтов существенно зависят от их температуры. При ее увеличении, т.е. оттаивании, также грунты дают (также как лесс) мгновенную просадку, а при промораживании наблюдается морозное пучение строительство на таких гуртах ведется специальными методами:

- либо сохранение весной мерзлоты;

- либо специального оттаивания и уплотнения

- либо применение специаьных схем зданий не боящихся осадок;

4. Заторфованные грунты – грунты, содержащие от 30 до 60 % органический веществ, эти грунты обладают малой прочностью, и большой а главное неравномерной сжимаемостью.

В погребенном торфе можно строить, но не в коем случае не дорывать до торфа (гниение) и проверяется несущая способность (подстилающий торфяной слой)

5. Набухающие глины – увеличивают свой объем при замачивании.

6. Засоленные грунты - при засолении резко снижают свою прочность и увеличивают сжимаемость (в местах где возникает постоянная фильтрация воды следует вымывание соли)

7. Озерно-ледниковые отложения (ленточные глины)

Исторический процесс их образования выглядит следующим образом: водный поток несет крупные частицы и они выпадают в осадок. Вода останавливается и выпадают мелкие частицы и т.д.

глинистые прослойки водонасыщенны за счет такой структуры (глинистых прослоек) они очень хорошо пропускают воду в горизонтальном направлении, а в вертикальном kф достаточно мал.

Если ленточные глины перемять, то они переходят в текуче- пластичное состояние, за счет освобождения воды из глинистых прослоек.

 

Конструктивные мероприятия

· Замена грунта основания (грунтовые подушки)

· Шпунтовые ограждения

· Армирование грунтов

· Боковые пригрузки

А. Грунтовые подушки

 

Если в основании залегают слабые грунты и их использование оказывается невозможным или нецелесообразным, то возможно экономичной может оказаться замена слабого грунта другим, т.е. применяют т.н. грунтовые подушки.

Все основные выкладки, расчеты и замечания касательно применения и проектирования грунтовых (песчаных) подушек см. ранее стр.24

Б. Шпунтовые конструкции

 

используются для улучшения условий работы грунтов как ограждающие элементы в основания сооружений

Шпунт погружают через толщу слабых грунтов в относительно плотный грунт. И на песчаной подсыпке (дренирующий слой) в сопряжении со шпунтовым ограждением устраивается сооружение.

Такое технической решение исключает возможность выпирания грунта в сторону из-под фундамента, т.е. увеличивает его несущую способность, за счет того, что грунт приводит к уменьшению осадок.

Рис. 12.2. Усиление основания с помощью шпунтового ограждения:

1 – фундамент; 2 – слабый грунт; 3 – шпунтовое ограждение; 4 – плотный грунт; 5 – песчаная подушка (дренирующий слой)

Рис. 12.3. Армировании грунта в искусственном основании фундамента (а), при устройстве насыпи (б), при воздействии засыпок (в):

1 – фундамент; 2 – армирующие элементы; 3 – песчаная подушка; 4 – насыпь; 5 – подпорная стенка; 6 – призма обрушения.

В. Армирование грунта

 

Метод армирования грунта заключается в введении в него специальных, армирующих элементов, уменьшающих его сжимаемость и увеличивающих его прочность. Армирование производится в виде лент или сплошных матов, выполненных из геотекстиля. Реже используется металлическая арматура (см. рис. 12.2). Армирующие элементы должны обладать достаточной прочностью и обеспечивать необходимое зацепление с грунтом, для чего их поверхность делается шероховатой.

 

Г. Боковые пригрузки

 

Устройством пригрузок основания и низовой части откосов можно повысить устойчивость откосов, а также основание грунта под ее подошвой. Пригрузки выполняются из крупнообломочных или песчаных грунтов

Рис. 12.4. Увеличение устойчивости насыпи на слабых грунтах методом боковой пригрузки:

1 – слабый грунт; 2 – боковая пригрузка; 3 – насыпь.

Уплотнение грунтов

 

Методы уплотнения грунтов подразделяют на:

- поверхностные, когда уплотняющие воздействия прикладываются на поверхности и приводят к уплотнению сравнительно небольшой толщи грунтов

- глубинные, когда уплотняющие воздействия передаются значительные по глубине участки грунтового массива.

Поверхностное уплотнение производится

· укаткой;

· трамбовкой;

· вибрационными механизмами (виброуплотнением)

· подводными взрывами;

· вытрамбовыванием котлованов.

→ К методам глубинного уплотнения относят

· устройство песчаных, грунтовых и известковых свай

· глубинное виброуплотнение

· уплотнение статической пригрузкой в сочетании с устройством вертикального дренажа

· водопонижение

· глубинные(камуфлетные взрывы зарядов ВВ или электровзрывы)

Любые уплотнение можно производить только до определенного предела (до отказа), после достижения которого дальнейшее воздействие не производят к заметному уплотнению

На рис. 12.5 приведены графики иллюстрирующие процесс уплотнения грунта при цилиндрических уплотняющих воздействиях (укатке, трамбовке)

Уплотняемость грунтов, в значительной степени зависит от их влажности и определяется максимальной плотностью скелета уплотняемого грунта и относительной влажностью Wопт

 

 

Рис. 12.6. Зависимость плотности скелета уплотняемого грунта от влажности при стандартном уплотнении

Рис. 12.5. Понижение уплотняемой поверхности в зависимости от числа ударов (проходов):

а - от общего числа ударов; б - от каждых двух ударов; 1 - точка уплотнения до отказа

Оптимальная влажность – влажность соответствующая наилучшему уплотнению грунта. Она определяется в приборе стандартного уплотнения (прибор Проктора)

 

А. Укатка и вибрирование

 

Уплотнение укаткой производится самоходными и прицепными катками на пневматическом ходу, гружеными скреперами, автомашинами, тракторами. Помимо укатки используют виброкатки и самопередвигающиеся вибромашины. Укаткам можно уплотнить грунты только на очень небольшую глубину, поэтому этот метод в основном применятся при послойном возведении грунтовых подушек, планировочных насыпей, земляных сооружений, при подсыпке оснований под полы. Уплотнение достигается многократной проходкой уплотняющих механизмов. Влажность грунтов при этом должна соответствовать оптимальной.

За уплотненную зону hсom принимают толщу грунта, в пределах которой плотность скелета грунта ρd не ниже заданного в проекте или допустимого её минимального значения. Уплотнение оптимальной толщины уплотняемого слоя грунта и числа проходов используемых механизмов производится на основании опытных работ.

Б. Трамбовка

 

-Ручные легкие трамбовки (при ограниченном фронте работ)

-Тяжелые трамбовки

Рис. Ручные легкие трамбовки

 

Рис. Тяжелые трамбовки

 

Тяжелая трамбовка изготавливается из ж/б и имеет в плане форму круга или многоугольника (>8 сторон). Применяется для уплотнения всех видов грунтов в природном залегании (пылевато-глинистых при Sr <0,7), а также искусственных оснований и насыпей.

 

Рис. 12.7. Схема поверхностного уплотнения грунта тяжелой трамбовкой.

1-уплотняемая полоса; 2-полоса перекрытия; 3-уплотняемая полоса; 4-место стоянки экскаватора; 5-ось проходки экскаватора; 6-трамбовка.

 

- коэффициент

- диаметр трамбовки

Пески, супеси: =1,8

Суглинки, глины: =1,5

Имеется опыт применения сверхтяжелых трамбовок весом >40т, сбрасываемых с высоты до 40м.

Часто уплотнение производится до определенной степени плотности, выражаемой через коэффициент уплотнения , равный отношению заданного или фактически полученного значения плотности скелета уплотненного грунта к его максимальному значению по стандартному уплотнению , т.е. = / .

При этом принимают ≈ 0,92…0,98

Трамбование производится с перекрытием следов (рис.12.7)

 

В. Подводные взрывы

применяются для уплотнения рыхлых песчаных грунтов или макропористых просадочных. Наибольший эффект при Sr =0,7…0,8

 

Рис. Схема уплотнения рыхлых песчаных грунтов подводными взрывами

За счет энергии взрыва уплотнение происходит примерно на h =0,3…0,5(м),

hобщ =1…4(м).

Суть метода заключается в использовании энергии взрыва, производимого в водной среде, для разрушения структуры и уплотнения грунтов.

Водная среда, с одной стороны, обеспечивает более равномерное распределение уплотняющего взрывного воздействия по поверхности грунта, с другой стороны – гасит энергию взрыва, направленную вверх.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 1613; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.160.216 (0.074 с.)