Кривые линии. Плоские кривые. Пространственные кривые. Поверхности вращения. Линейчатые поверхности. Винтовые поверхности 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кривые линии. Плоские кривые. Пространственные кривые. Поверхности вращения. Линейчатые поверхности. Винтовые поверхности



 

 

Любая кривая линия может рассматривается как траектория движения какой-либо точки.

Кривая линия называется плоской, если все ее точки располагаются в одной плоскости. Кривая линия может быть получена в пресечении кривой поверхности с плоскостью, такая кривая будет плоской.

Если кривая образуется согласно какому-то закону и ее образование может быть выражено математически, то такая кривая называется закономерной кривой. Если образование кривой не может быть выражено математическим уравнением, то такая кривая называется незакономерной.

Для построения проекций кривой линии следует найти проекции нескольких ее точек и соединить их плавной кривой линией.

 

Особые точки кривой

 

Обыкновенной точкой кривой называют такую точку М, которую можно заключить в прямоугольник (хотя бы очень малый) так, что попавшая в него часть кривой является простым отрезком. Рис.6.1

Рис.6. 1

 

Все другие точки являются особыми узловая точка А или точка самопересечения. В этой точке кривая имеет две различные касательные. Точка В (точка возврата) первого рода, в которой кривая подходит к точке двумя ветвями, имеющими в точке В общую касательную. Точка С (точка возврата) второго рода, в которой кривая подходит к точке двумя ветвями, имеющими в точке С общую касательную, расположенную в близи точки С, по одну сторону от обеих ветвей. Рис. 6.2 а,б,в

Рис. 6.2

Пространственные кривые

 

Кривая линия называется пространственной, если она всеми своими точками не лежит в одной плоскости.

К пространственным кривым линиям относятся цилиндриче­ская и коническая винтовые линии.

 

Цилиндрическая винтовая линия.

 

Цилиндрической винтовой линией называется траектория точки, движущейся по образующей прямого кругового цилиндра, которая, в свою очередь, вращается вокруг оси цилиндра. Расстояние, на которое перемещается точка по образующей за один полный её оборот, называется шагом винтовой линии. Ось цилиндра называется осью винтовой линии. Радиус осно­вания цилиндра называется радиусом винтовой линии.

Рассмотрим построение цилиндрической винтовой линии, пер­пендикулярной к плоскости П1 с шагом h и радиусом R. Такая винтовая линия на плоскости П1 изобразится в виде окружности радиуса R.

Чтобы построить фронтальную проекцию винтовой линии, сле­дует разделить её горизонтальную проекцию на несколько равных частей. В данном случае разделим окружность на 8 частей. На такое же количество частей делим фронтальную проекцию. В данном случае высота фронтальной проекции является шагом винтовой линии. По­строение винтовой линии на рис.6.3 начато сточки 1 (11,12).

При повороте точки на одну восьмую (1/8) часть дуги окружно­сти она соответственно переместится по высоте вдоль оси винтовой линии на 1/8 часть шага (точки 21 и 22). При повороте точки на две восьмых дуги окружности точка переместится на две восьмых (2/8) высоты шага (точки 31 и 32) и т.д. (рис.3).

Рис. 6.3

Соединив фронтальные проек­ции точек 12, 22, 32 и т.д. плавной кривой, получим фронтальную проекцию цилиндрической винтовой линии. Цилиндриче­ская поверхность при построе­нии винтовой считается непро­зрачной.

Различают правую и ле­вую винтовую линии. Правой называют винтовую линию, когда точки при подъёме вращаются против часовой стрелки, а её участок на передней части цилиндра имеет подъём слева направо. У левой винтовой линии точка вращается по часовой стрелке, а подъём кривой линии на передней части цилиндра справа налево (рис.6.4 а, б).

 

а)

б)

Рис. 6.4

 

Коническая винтовая линия.

 

Такую линию описывает точка, которая движется по какой-нибудь образующей прямого кругового конуса, вращающегося в то же время около своей оси так, что путь проходимый точкой по образующей все время пропорционален углу поворота конуса.

Проекция на ось конуса смещения точки вдоль образующей за один оборот называется шагом конической винтовой линии.

Особенность построения горизонтальной проекции конической винтовой линии состоит в том, что горизонтальная проекция движущейся точки определяется с учетом двух движений: вращательно­го — вместе с образующей и поступатель­ного — вдоль образующей.

Так, при построении точки 1 горизон­тальная проекция образующей конуса SO была повернута на 360°/12, а точка пе­ремещена по ней на l/12 длины SO. В та­кой же последовательности построены и остальные точки.

Горизонтальная проекция конической винтовой линии представляет собой спи­раль Архимеда. Фронтальная про­екция каждой точки винтовой линии опре­деляется пересечением фронтальных про­екций параллелей конуса, плоскости которых смещены одна относительно дру­гой на расстояние, равное h /12, и линий проекционной связи.

 

Рис. 6.5

Всякая правильная кривая поверхность представляет собой не­прерывную совокупность последовательных положений прямой или кривой линии, движущейся в пространстве по определённому закону. Линия, образующая своим движением поверхность, называется обра­зующей поверхности. Линия, по которой движется образующая, назы­вается направляющей поверхности. На рисунке 6 а, б дан пример образования конической и цилиндрической поверхности.

 

 

Рис. 6.6

Рис. 6.6

Чертёж поверхности представляет собой проекцию очерка по­верхности. Очерком поверхности называется проекция видимого кон­тура поверхности относительно данной плоскости проекции. Контуром видимости поверхности является линия касания проецирующих лучей, огибающих (обёртывающих) данную поверхность при изображении её на плоскости проекций.

На рисунке 6.7 дано построение очерковых образующих цилиндра на фронтальную и горизонтальную плоскость проекций.

 

 


Рис. 6.7

 

В зависимости от вида образующих, все кривые поверхности можно разделить на два класса:

1.Поверхности с прямолинейными образующими - это линей­чатые поверхности.

2.Поверхности с криволинейными образующими.

Линейчатые поверхности, в свою очередь, делятся на развёр­тываемые и неразвёртываемые.

Развёртываемой называется поверхность, если её без складок и разрывов можно совместить с плоскостью. У развёртываемых поверх­ностей смежные образующие параллельны друг другу или пересека­ются друг с другом.

У поверхностей неразвёртываемых смежные прямолинейные образующие не параллельны друг другу и не пересекаются.

Все поверхности с криволинейными образующими неразвёрты­ваемые.

Из общей массы поверхностей выделяется особый класс по­верхностей, которые называются поверхностями вращения.

Поверхности вращения образуются вращением какой-нибудь образующей прямой или кривой вокруг неподвижной прямой, которая является осью вращения.

При вращении кривой 6, 2, 1, 3 вокруг оси ОО (рис.6.8а) обра­зуется поверхность вращения. На рис.6.8б она представлена орто­гональным чертежом, а на рис.6.8 г дано её наглядное изображение.

 

 

 

 


Рис. 6.8

Сечение поверхности вращения плоскостью, перпендикулярной оси вращения, представляет собой окружность. Все такие окружности называются параллелями поверхности.

Параллель наибольшего диаметра называется экватором, меньшего диаметра - горлом поверхности. На рис.6.8б окружность 1-1 - экватор, окружность 2-2 - горло поверхности. Следы секущих плоскостей α2, β2 перпендикулярны оси вращения поверхности.

Плоскость, проходящая через ось поверхности вращения, назы­вается меридиональной плоскостью, а контур сечения поверхности такой плоскости - меридианом. Все меридианы представляют собой кривые, равные друг другу.

Рассмотрим образование некоторых наиболее часто встречаю­щихся в инженерной практике поверхностей.

Цилиндрическая поверхность представляет собой поверх­ность, образованную движением прямой линии по некоторой кривой линии. Причём прямая во всех своих положениях остаётся параллель­ной некоторому постоянному направлению (рис.6.9).

 

Рис.6. 9

 

Если точка лежит на цилиндрической поверхности, то она должна лежать на образующей этой поверхности. Замкнутая цилинд­рическая поверхность, заключённая между двумя параллельными плоскостями образует геометрическое тело - цилиндр. На рис 6.9а изображён прямой цилиндр, на рис.6.9б - наклонный. На рис.6.9б показано положение точки на поверхности цилиндра.

Коническая поверхность представляет собой поверхность, об­разованную движением прямой линии по некоторой направляющей. В данном случае направляющей является окружность. Причём прямая во всех положениях проходит через одну и ту же точку, называемую вершиной (рис.6.10). Часть замкнутой конической поверхности, заключённой между её вершиной и плос­костью любого на­правления, образует геометрическое тело - конус. На рис. 6.10 а, б дано изо­бражение прямого и наклонного конуса и определение поло­жения точки на их поверхностях.

 

Рис. 6.10

 

Цилиндроид - поверхность, образованная движением прямой линии по двум не лежащим в одной плоскости направляющим - кри­вым линиям. При этом прямая во всех положениях остаётся параллельной некоторой плоскости -плоскости параллелизма. На рис.6.11а дано наглядное изображение цилиндроида. На рис.6.11б изображён цилиндроид в ортогональной проекции.

 

   
а) Рис.6. 11
 

б)

Рис. 6.12

 

Коноид - линейчатая поверхность, у которой одна направляю­щая является кривой линией, а вторая - прямой. Образующая во всех положениях параллельна некоторой плоскости параллелизма (рис.12 а, б).

 

Рис. 6.12

 

Косая плоскость (гиперболический параболоид) - частный случай цилиндроида и представляет собой поверхность, образованную движением прямолинейной образующей параллельно плоскости параллелизма по двум скрещивающимся направляющим прямым. Это АВ и CD. За плоскость параллелизма принята горизонтальная плоскость П1, образующая АС || П1 (рис.6. 13).

Косая плоскость относится к линейчатым поверхностям. Она образуется движением прямой линии. Однако для этой поверхности образующей может быть и кривая линия, например, парабола. Если эту поверхность пересечь плоскостью, параллельной плоскости П1, то в сечении получится гипербола. Поэтому косую плоскость также на­зывают гиперболическим параболоидом.

 

Рис.6. 13

 

Гиперболоид вращения. Существуют два вида гиперболоида: однополостный и двуполостный. Первый получается при вращении гиперболы вокруг её мнимой оси (рис.6.14а). Поверхность однополостного гиперболоида может быть образована и вращением прямой линии. Это поверхность дважды линейчатая, т.е. через каждую точку однополостного гиперболоида проходят две и только две его прямо­линейные образующие. Проекции однополостного гиперболоида строятся следующим образом (рис.6.14б). Пусть ось i расположена перпендику­лярно плоскости П1. Когда образующая АВ вращает­ся вокруг оси i, каждая точка прямой пере­мещается в пространстве по окружности (па­раллели), плоскость которой перпендикулярна оси i. Таким образом, на плоскости П1 эта окружность проецируется без искажения, а на плоскость П2 - в виде горизонтальной прямой. Ближайшая к оси вращения точка С образующей опишет окружность минимального радиу­са. Это будет окружность горла. Горизонталь­ные проекции всех образующих должны касать­ся проекции окружности горла. Таким образом, каждое последующее положение прямолиней­ной образующей можно получать проведением касательных к проекции окружности горла.

На рис.6.14б эта окружность разделена на двенадцать частей. К проекции этой окружности в точке D1 проведена касательная A1'B1', a горизонтальная проекция образующей повёрнута на 30°. Фронтальная проекция этой касательной определяется точками A2'B2', каждая из которых расположена в плоскости своей параллели. Остальные обра­зующие строятся аналогично. Форма поверхности гиперболоида зави­сит от следующих параметров: D' и D, D' и Н, а также и от диаметра горла поверхности.

 

  а)       б)

Рис.6. 14

 

ЛЕКЦИЯ № 7

Гранные поверхности

Многогранник – это конечная часть пространства, ограниченная отсеками пересекающихся плоскостей.

Совокупность отсеков образует гранную поверхность многогранника. Отсеки плоскостей называются гранями, а линии их пересечения ребрами. Ребра пересекаются в точках, называемых вершинами.

Гранная поверхность называется выпуклой, если она целиком лежит по одну сторону от плоскости любой своей грани. Если гранями многоранника служат равные правильные многоугольники, а многогранные углы при вершинах равны, то такой многогранник правильный. Существует пять правильных многогранников:

тетраэдр – четырехгарнник;

гексаэдр – куб;

октаэдр – восмигранник;

додекаэдр – двенадцатигранник;

икосаэдр – двадцатигранник.

Определителем многогранника называется совокупность условий необходимых и достаточных для его однозначного задания.

 

Рис.7.1

 

Наиболее распространенными видами многогранников являются призмы и пирамиды. Призма, у которой боковые грани перпендикулярны плоскости основания называется прямой (рис. 7. 2 аб).

Рис. 7.2

 

Если боковые грани призмы не перпендикулярны плоскости основания, то такая призма называется наклонной (рис.7.3 а, б).

 

Рис. 7.3

 

Многогранник, у которого основание представляет собой мно­гоугольник, а боковые грани - треугольники, сходящиеся в одной точке - вершине, называется пирамидой.

Если высота пирамиды проходит через центр тяжести основа­ния, то такая пирамида называется прямой. При всех других случаях пирамида будет наклонной (рис 7.4).

 

Рис. 7.4

 

На ортогональных чертежах каждый многогранник должен быть изображён двумя проекциями всех рёбер и вершин.

Если точка лежит на поверхности мно­гогранника, то она располагается либо на реб­ре, либо на грани этого многогранника (рис.7.5 а, б, в).

Построение точки на ребре многогранника выполняется также, как построение точки на прямой (рис.7.5а). Проекции точки на поверхности грани многогранника находятся так же, как проекции точки на плоскости. Сначала через проекцию точки проводится пря­мая, заведомо лежащая в плоскости грани. Затем эта проекция прямой строится на другой проекции грани. Далее на этой проекции прямой строится проекция точки (рис.7.5 б, в).

 

Рис.7. 5

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 1154; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.192.219 (0.046 с.)