II. Куруговорот воды и содержащихся в ней веществ 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

II. Куруговорот воды и содержащихся в ней веществ



Общий объём воды на зеином шаре 1,39·109 км3.

На долю поверхностных вод суши без ледников приходится только 0,01% от общего объёма вод. Пресные воды составляют 2,64%, из них 99% сосредоточено в ледниках и подземных водоносных горизонтах. Доля вод в речной сети очень мала, но он возобновляется в среднем в течение 19 дней, следовательно, объем речной воды, стекающей за год, будет в 19 раз (365:19) больше. Средний период возобновления воды в остальных водных объектах намного больше.

Площадь Мирового океана занимает 71% земного шара, поверхностные воды су­ши - 4%, или 15% площади суши.

Наблюдается тенденция уменьшения запасов вод на суше и их увеличения в Ми­ровом океане. За 1890-1990 гг. уровень Мирового океана повысился на 15 см.

В глобальном круговороте воды выделяют два звена:

- океаническое звено, представляющее собой многократно повторяющийся цикл: испарение с поверхности океана - перенос водяного пара над океаном - осадки на поверхность океана - океанические течения - испарение и т.д.;

- материковое звено, представляющее собой многократно повторяющийся цикл: испарение с поверхности суши - перенос водяного пара - осадки на поверх­ность суши - поверхностный и подземный сток - испарение и т.д.

Оба звена связаны между собой переносом водяного пара с океана на сушу и по­верхностным и подземным стоком с суши в океан.

На суше выделяют области внешнего (80% территории) и внутреннего (20%) сто­ка. Сток в океан происходит только с территории первой области. Вторая область включает обширные бессточные территории, встречающиеся на всех материках кроме Антарктиды. В круговороте воды эти территории связаны с остальной частью суши только атмосферным переносом влаги.

Осадки на любом участке суши складываются из "внешних" осадков, сконденси­ровавшихся из водяного пара, принесенного извне, и "внутренних" (или "местных") осадков, сконденсировавшихся из влаги, испарившейся с поверхности данного кон­кретного участка суши. Этот многократно повторяющийся процесс называется внутри-материковым влагооборотом. Часть выпавших осадков переходит в воды поверхност­ного и подземного стока. Суммарный сток с заданной территории равен разности меж­ду количеством влаги, принесенной на нее по воздуху извне, и унесенный за ее преде­лы.

С океана ежегодно испаряется в среднем 505 тыс. км3 воды. Возвращается в океан в виде атмосферных осадков 458 тыс. км3. Остальные 47 тыс. км3 переносятся на сушу в виде пара.

На поверхность суши в области внешнего стока выпадает 110 тыс. км3 осадков; из них 47 тыс. км3 за счет влаги принесенной с океана, и 63 тыс. км3 за счет влаги, испа­ряющейся с суши. В испарении с суши 42% приходится на транспирацию растений. В океан с суши стекает 47 тыс. км3, в том числе 42 тыс. км3 — речной сток, 3 тыс. км3 — сток льда и 2 тыс. км3 - сток подземных вод, не дренируемых реками.

На поверхность области внутреннего стока выпадает 9 тыс. км3 осадков и столько же испаряется. Принос влаги извне с воздушными массами равен ее выносу.

Отношение всех осадков, выпавших на данную территорию, к влаге, принесенной извне, называется коэффициентом влагооборота вл).

Чем большее число раз влага, поступившая извне на данную территорию суши в воздушных массах, выпадет на ее поверхность и снова испарится, тем больше будет вклад местных осадков в их общую сумму, и, следовательно, Квл будет выше. Отсюда наибольшие значения Квл свойственны обширным территориям с высокой величиной испарения, что характерно для экваториального пояса. Для всей суши коэффициент влагооборота Квл = 110/47 = 2,34. Для отдельных материков Квл меняется от 1,14 (Авст­ралия) до 1,68 (Южная Америка).

Соотношение между различными источниками поступления воды на выделенную поверхность (либо в выделенный объем суши или водного объекта), источниками удаления воды с этой поверхности (из этого объема) и изменением запасов воды на по­верхности (в объеме) называется водным балансом выделенной поверхности (объема). Источники поступления (прихода) и удаления (расходования) воды называются состав­ляющими, или элементами водного баланса.

Водный баланс может быть составлен для земного шара в целом, для суши, от­дельных материков, стран, административных областей и районов, речных бассейнов, отдельных водных объектов и их частей. При составлении водного баланса суши в це­лом или для отдельных ее участков рассматривают обычно определенный слой лито­сферы, например, слой от земной поверхности до первого водоупора или до самого нижнего водоносного горизонта, участвующего в круговороте воды.

Водный баланс может определяться за год, отдельные сезоны, фазы водного ре­жима, отдельные сутки в среднем за многолетний период или за отрезки времени кон­кретных лет.

Водный баланс может быть записан в виде уравнения, представляющего частный случай уравнения сохранения вещества. Основные природные составляющие водного баланса: атмосферные осадки, испарение, отток (сток) и приток воды поверхностным и подземным путем, изменение запасов воды в выделенном объеме (или площади).

Водный баланс может быть выражен в единицах объема (м3, км3) или в виде тол­щины слоя воды (в мм), получаемого путем деления объема на площадь рассматривае­мой территории.

Средний годовой водный баланс Земли в целом и отдельно для Мирового океана и суши приведен в табл. 2.2.

Таблица 2.2

Средний годовой водный баланс Земли

Часть Земли Площадь, млн. км2 Осадки x Испарение z Сток
тыс. км3 мм тыс. км3 мм речной yp ледниковый yл подземный w
тыс. км3 мм тыс. км3 мм тыс. км3 мм
Весь Земной шар                      
Мировой океан           41,7   3,0   2,2  
Суша в том числе:           41,7   3,0   2,2  
область внешнего стока           41,7   3,0   2,2  
область внутреннего стока                      

 

Уравнение водного баланса: для всего земного шара х = z, для Мирового океана xок + yр + yл + w = zок для всей суши хс = ур + ул + w + zc, для внешней области стока x'с = yр + yл + w + zc', для области внутреннего стока хс" = z". Здесь х, хок, хс, хс', хс" - со­ответственно осадки на всю поверхность земного шара, океана, всю сушу, область внешнего и внутреннего стока; z, zок, zc, zc', zс" - аналогичное значение испарения, ур, ул, w - сток в океан соответственно рек, льда, подземных вод.

Водный баланс участков суши, с учетом хозяйственной деятельности, кроме ука­занных составляющих, может включать безвозвратный забор воды из водных объектов, переброску стока из других территорий. Земледелие, вырубка лесов, создание водохра­нилищ также влияют на соотношение природных составляющих водного баланса.

Круговорот наносов. Наносы — это твердые вещества, содержащиеся в водных объектах и переносимые водой во взвешенном или влекомом состоянии. Основной ис­точник поступления наносов в водные объекты — смыв почвы с поверхности водосбо­ров талыми и дождевыми потоками (эрозия) и в меньшей мере размыв дна и берегов водных объектов под действием течения и волн. Реками наносы выносятся в океан. Здесь они дополняются продуктами размыва морских берегов и взмучивания дна вол­нами на мелководье, а также частицами растительных и животных организмов.

Годовой сток взвешенных наносов рек мира 15,7 млрд. т. в год. Сток влекомых наносов рек мира 5-10% общего твердого стока.

Круговорот солей. Подземные воды при своем движении растворяют горные по­роды и являются основными источниками формирования солевого состава рек и водо­емов суши. С речными водами в Мировой океан выносится 3,1 млрд. т. солей за год, 1,2 млрд. т. солей поступает в него непосредственно с подземными водами, 0,2 млрд. т. образуется в результате растворения речных взвесей.

С поверхности океана с испаряющимися частицами воды, а также с брызгами ежегодно уходит 5 млрд. т. солей, из которых 4,5 млрд. т. тут же возвращается обратно, а 0,5 млрд. т. уносится на сушу. Таким образом, запас солей в океане ежегодно попол­няется на 4 млрд. т., т.е. около одной десятимиллионной доли их общего количества в нем.

Круговорот газов. Из газов, участвующих в круговороте веществ в природе, наи­большее значение имеют кислород O2 и диоксид углерода (углекислый газ) СО2.. Важ­нейший фактор круговорота этих газов - процесс фотосинтеза:

6СО2 + 6Н2ОС6Н12О6 + 6O2,

в результате которого поглощается СО2., создается органическое вещество (продукция) и выделяется О2. Вследствие жизнедеятельности фитопланктона океана продуцируется 154 млрд. т. в год (примерно столько же, сколько растительностью суши). Расходова­ние О2 происходит в результате биохимического и химического разложения (окисле­ния) органического вещества (деструкция), сопровождающегося выделением СО2.

С дождевыми и речными водами в океан поступает 3,6 млрд. т. О2. На окисли­тельные процессы в океане, а также потребление живыми водными организмами рас­ходуется 151 млрд. т. О2.. Избыток в 6,6 млрд. т. океан ежегодно отдает атмосфере.

Источниками поступления СО2 в океан кроме процесса разложения органических веществ служат речные и дождевые воды, дыхание водных организмов, извержение подводных вулканов. В океане в высоких широтах СО2 благодаря повышенной раство­римости при низких температурах воды поглощается из атмосферы. При перемещении этих вод в низкие широты вследствие повышения температуры воды океан отдает СО2 в атмосферу. Заметным фактором поступления СО2 в атмосферу является хозяйствен­ная деятельность.


III. ПОДЗЕМНЫЕ ВОДЫ

К подземным водам как объекту изучения гидрологией относятся воды, содер­жащиеся в земной коре и активно участвующие в круговороте воды на земном шаре, т.е. взаимодействующие с атмосферой и поверхностными водами.

Основной источник формирования подземных вод - атмосферные осадки (таю­щий снег и дожди), которые поступают в верхний слой грунта в результате инфильтра­ции (впитывания). При обильном поступлении воды она заполняет все пустоты в грун­те. По трещинам, ходам животных, отверстиям от сгнивших корней растений, относи­тельно крупным порам (т.е. промежуткам между частицами грунта) вода перемещается вниз под влиянием силы тяжести - это гравитационная вода. Она достигает водо­упорного слоя (чаще всего глинистые отложения), накапливаясь здесь, образует водо­носный горизонт, т.е. слой водопроницаемого пласта, насыщенного водой, которая движется по поверхности водоупора в сторону его уклона под влиянием силы тяжести. Там, где отрицательные формы рельефа (речные долины, овраги, озерные котловины) вскрывают водоносный горизонт, подземные воды выходят на поверхность в виде род­ников или рассредоточенного высачивания на участке склона.

При определенном геологическом строении грунтовые воды до выхода на по­верхность перекрываются другим водоупором, затем вторым и.т.д. Воды, перекрытые сверху водоупорными слоями, называются межпластовыми подземными водами. Питание этих вод осуществляется на участках, где соответствующий водоносный гори­зонт не перекрыт сверху водоупором. Для межпластовых вод характерно возникнове­ние напора, вследствие которого вода при вскрытии водоносного горизонта буровой скважиной или по естественным трещинам поднимается вверх. Уровень, до которого поднимается вода, называется пьезометрическим уровнем. Превышение этого уровня над уровнем воды в водоносном горизонте называется высотой напора. Подъем воды под действием напора может достигать земной поверхности. Особенно это свойственно артезианским водам, приуроченным к геологическим структурам синклинального типа - артезианским бассейнам.

Между водоносными горизонтами обычно существует связь вследствие циркуля­ции воды по трещинам в водоупорах или путем медленного просачивания через них по порам.

Подземные воды, приуроченные к водоносным горизонтам, называются пласто­выми водами. В горных породах подземные воды чаще перемещаются по системе те­щин в породах (трещинные воды), по изолированным трещинам или жилам с повы­шенной трещиноватостью (жильные воды), по карстовым пустотам (карстовые во­ды).

В зоне распространения многолетнемерзлых пород различают подмерзлотные воды, залегающие под толщей мерзлых пород, межмерзлотные воды внутри мерзлой толщи и надмерзлотные воды, для которых мерзлые породы служат водоупором.

Грунтовые и тем более межпластовые воды существуют, как правило, в течение всего года и обеспечивают постоянное питание рек. В зоне распространения многолет­немерзлых пород это относится только к подмерзлотным водам.

Отношение объема всех пустот к объему образца грунта называется скважинностью, а объема пор (Vпор) к объему грунта (Vгр) называется пористостью (р): р = Vпор / Vгр Обычно они выражаются в %. Пористость песка в среднем 40%, глины - около 50%.

Верхний слой грунта после прекращения таяния снега или дождя постепенно ос­вобождается от гравитационной воды. По возникшим пустотам циркулирует воздух. Слой грунта (верхняя часть которого является почвой) до уровня грунтовых вод назы­вают зоной аэрации. В этой зоне остаются следующие типы вод:

- капиллярная вода, заполняющая поры и находящаяся под влиянием капилляр­ных сил; в нижней части зоны аэрации вода, поднимаясь по порам над слоем грунтовых вод, образуют зону капиллярного поднятия (капиллярную кайму) толщиной от 0 (гра­вий, галька) до 6-12 м. (глина);

-пленочная вода, образующая тонкую пленку вокруг частиц грунта и сравнитель­но слабо связанная с ними молекулярными силами; перемещается от мест с большей толщиной пленки к местам с меньшей ее толщиной;

- гигроскопическая вода, прочно связанная с частицами грунта молекулярными силами.

Способность грунта вмещать и удерживать определенное количество воды назы­вается влагоемкостью грунта. Полная влагоемкость - суммарное содержание в грунте всех видов воды при полном заполнении всех пор, выраженная в процентах от массы образца грунта. Наименьшая (или полевая) влагоемкость - вода, остающаяся в грунте после отекания гравитационной воды (для песков 3-5%, суглинков и глин 12-22%). Влажность грунта — фактическое содержание воды в грунте, выраженное в ви­де толщины слоя (в мм) или в процентах от массы сухого грунта.

Воды зоны аэрации, оставшиеся в порах грунта, постепенно расходуются на испа­рение, в основном путем транспирации растений.

Временные скопления гравитационных вод, в зоне аэрации могут возникать над отдельными линзами водоупорных пород (верховодка) и над относительным водоупо-ром, например, над иллювиальным горизонтом подзолистых почв, водопроницаемость которого значительно меньше вышележащих слоев. Перемещение воды по относитель­ному водоупору в сторону его уклона образует почвенный, или внутрипочвенный сток.

Подземные воды могут формироваться в результате инфильтрации в грунт не только атмосферных осадков, но и воды из поверхностных водных объектов. Оба эти вида вод называются инфильтрационными подземными водами. Подземные воды могут формироваться также в следствие конденсации водяного пара в порах грунта. Это конденсационные воды, играющие заметную роль в пустынях. Все перечислен­ные виды подземных вод являются экзогенными. К эндогенным относятся воды, об­разующиеся из паров магмы — дегидрационные воды.

Глубина распространения межпластовых подземных вод, участвующих в круго­вороте воды на земле, достигает, как правило, нескольких сотен метров. Глубина зале­гания грунтовых вод, сильно изменяясь по территории в зависимости от локальных ус­ловий в целом, подчинена закону географической зональности, увеличиваясь от долей метра в зоне тундр до десятков метров в степной зоне.

Движение подземных вод по порам в зоне насыщения, называемое фильтрацией, как правило, ламинарное. Скорость фильтрации (vф) выражается законом Дарси:

vф = Кф·I

Здесь I - гидравлический уклон, равный либо уклону поверхности уровня безнапорных вод, либо уклону пьезометрического уровня для напорных вод; Кф - коэффициент фильтрации, равный скорости фильтрации через данный грунт при I = 1 (т.е. вертикально вниз); его размерность м/с или м/сут. Кф для галечника равен 100-200 м/сут., для песка 1-50, для супеси 0,1-0,5, для глины 0,001-0,0001 м/сут.

Движение трещинных, жильных и особенно карстовых подземных вод может быть турбулентным.

Уравнение водного баланса зоны аэрации в пределах речного бассейна:

xинф + zгр = yпочв + Пгр + zз.а. ±∆uз.а.

где хинф поступление воды с поверхности земли (инфильтрация атмосферных осад­ков), zгр - испарение грунтовых вод, zз.а. - испарение из зоны аэрации, Пгр - питание грунтовых вод из зоны аэрации, ∆ игр изменение влагозапасов вод зоны аэрации.

Уравнение водного баланса грунтовых вод (при отсутствии притока из-за преде­лов речного бассейна и фильтрации через водоупор):

Пгр = yгр + zгр ± ∆uгр

где угр сток грунтовых вод (т.е. разгрузка грунтовых вод на земную поверхность или непосредственно в реки и водоемы), ∆u - изменение запаса (объема) грунтовых вод. Типы водного режима зоны аэрации:

1) промывной — хинф >> zз.а., избыток воды расходуется на Пгр и yпочв;

2) компенсированный - xинфzз.а.;

3) испарительный (выпотной) - хинф << zз.а., недостаток воды частично возмещает­ся за счет zгр.

Типы водного режима грунтовых вод:

1) сезонного (преимущественно весеннего и осеннего) питания; максимальный уровень грунтовых вод весной, меньшее повышение осенью, низкий уровень в конце лета и особенно в конце зимы; наблюдается на большей части территории стран СНГ;

2) кратковременного летнего питания; максимальный уровень в июне — июле (иногда августе-сентябре); наблюдается в зоне многолетней мерзлоты;

3) круглогодичного, преимущественно зимне-весеннего питания; максимальный уровень в феврале-апреле, минимальный - в летне-осеннее время (юг и запад террито­рии бывшего СССР с непромерзаемой зоной аэрации).

Типы взаимодействия подземных и поверхностных вод:

1) Двухсторонняя гидравлическая связь. При низком уровне воды в реке уровень грунтовых вод находится выше, река получает грунтовое питание. При высоком уровне воды в реке уровень грунтовых вод оказывается ниже. Происходит инфильтрация реч­ной воды в грунт. Этот тип характерен для средних и крупных равнинных рек.

2) Односторонняя гидравлическая связь. Уровень воды в реке постоянно выше уровня грунтовых вод. В течение всего года речная вода питает грунтовые воды. Ха­рактерно для некоторых засушливых, а также карстовых районов.

3) Отсутствие гидравлической связи. Водоупор расположен выше максимального уровня воды в реке. Происходит постоянное питание реки грунтовыми водами, разгру­жающимися на склонах долины в виде ключей или рассредоточенного высачивания. Наиболее характерно для горных районов.


IV. ГИДРОЛОГИЯ РЕК

Река - это водоток, имеющий течение в продолжении большей части года, полу­чающий питание со своего водосбора и имеющий четко выраженное русло, сформиро­ванное самим водотоком. Родник, дающий начало реки, или выход речного потока из озера, болота, ледника — исток реки; место (створ) впадения реки в другую реку или приемный водоем (море, озеро) — устье реки.



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 654; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.36.203 (0.041 с.)