Лекція № 2. Біогенні вуглеводи. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лекція № 2. Біогенні вуглеводи.



Загальна характеристика, будова та функції вуглеводів

Вуглеводи – органічні сполуки, які найчастіше складаються з трьох хімічних елементів – вуглецю, водню і кисню. Відомі багато сполук, що містять, окрім цих трьох елементів, також фосфор, сірку і азот.

Вуглеводи широко поширені в природі. Вони утворюються в рослинах у результаті реакцій фотосинтезу і складають 80 – 90% їх сухої маси. В організмі тварин вуглеводи піддаються механічній і хімічній переробці. В середньому в організмі тварин міститься 1 – 2% вуглеводів в перерахунку на суху речовину.

Значення вуглеводів багатогранно. Так, вони є основою структури рослинної клітини, використовуються в енергетичних процесах і відкладаються у вигляді запасних поживних речовин (крохмаль). В організмі тварин і людини є головним джерелом хімічної енергії. Окремі органи задовольняють свої потреби в основному в результаті розщеплення глюкози: головний мозок – на 80%, серце – на 70 – 75%. Вуглеводи відкладаються в тканинах тваринного організму у вигляді запасних поживних речовин (глікоген). Деякі з них виконують опорні функції (гіалуронова кислота), беруть участь в захисних функціях, затримують розвиток мікробів (мукополісахариди слизу), служать хімічною основою для побудови молекул біополімерів, є складовими частинами макроергічних сполук і т.д.

За хімічними властивостями вуглеводи є альдегідо- і кетоспиртами. За будовою вуглеводи ділять на дві групи – прості, або моносахариди, і складні, або, полісахариди.

А. Моносахариди

Моносахариди класифікують за наявністю альдегідної або кетонної групи (альдози і кетози), числом вуглецевих атомів (тріози, тетрози, пентози, гексози і т.д.) і за хімічною природою (нейтральні і кислі цукри, аміноцукри).

Моносахариди – білі кристалічні речовини, добре розчинні у воді, солодкі на смак, оптично активні, вступають у хімічні реакції, характерні для альдегідо- або кетоспиртів, легко виявляються якісними і кількісними реакціями (Троммера, Селіванова, срібного дзеркала та ін.), піддаються різним видам бродіння. Окремим з них належить важлива роль в реакціях обміну речовин.

Тріози. Загальна формула – C3H6O3. За хімічними властивостями є альдегідо- і кетоспиртами:

Містяться в тканинах і біологічних рідинах у вигляді складних ефірів з ортофосфорною кислотою, як продукти проміжного обміну вуглеводів при реакціях гліколізу і бродіння.

Тетрози. Загальна формула – C4H8O4. За хімічними властивостями діляться на альдози і кетози. Найбільше значення має еритроза, яка міститься в тканинах у вигляді ефіру з ортофосфорною кислотою – продукту пентозного циклу окислення вуглеводів:

Пентози. Загальна формула – C5H10O5 (за винятком дезоксирибози, формула якої C5H10О4). Більшість пентоз утворюється в харчовому каналі тварин у результаті гідролізу пентозанів рослин:

nH2O + (C5H8O4)n ® nC5H10O5

 

Частина пентоз утворюється в результаті проміжного обміну (пентозному циклі). В тканинах пентози знаходяться у вільному стані, у вигляді ефірів ортофосфорної кислоти, входять до складу макроергічних сполук (АТФ), нуклеїнових кислот, коферментів (НАДФ, ФАД) та інших біологічно важливих сполук. До них належать:

 

Пентози в тканинах найчастіше знаходяться в циклічній формі, яку прийнято зображати формулами Коллі-Толленса або Хеуорса:

L(+)-Aрабіноза. Входить до складу плодів, є продуктом гідролізу бурякового жому, рослинного слизу, пектинових речовин, геміцелюлози, гуміарабіку, полісахаридів деяких бактерій (туберкульозної палички). Оптично активна (+105,5°).

D(+)-Ксилоза. Утворюється в харчовому каналі при гідролізі ксиланів, полісахаридів соломи, кукурудзи, висівок та ін. Знайдена у складі полісахаридно-білкових комплексів тканин. Використовується як поживне середовище при вирощуванні кормових дріжджів. Оптично активна (+ 18,8°).

D(+)-Pибоза. Як і інші моносахариди, існує у вигляді двох оптичних антиподів (D і L) і неактивного рацемата. Особливістю рибози є високий вміст (8,5%) ациклічної форми. Обов'язкова складова частина РНК, нуклеотидів, нуклеозидів, деяких коферментів і бактерійних полісахаридів. Утворюється в травному тракті при гідролізі цих речовин, в тканинах – у результаті функціонування пентозного циклу. Оптично активна (+23,7°).

D(+)-Дезоксирибоза. Є обов'язковою складовою частиною ДНК. Утворюється в харчовому каналі при гідролізі кормів, багатих на ДНК, а також в результаті розщеплення гексоз в пентозному циклі. Оптично активна (a-D(+)-рибоза – +55°, b-D(+)-рибоза –58°).

D(+)-Ксилулоза. Утворюється в тканинах при пентозному циклі. Виявляється у вигляді ксилулозо-5-фосфата, донатора двовуглецевих груп у міжмолекулярних реакціях проміжного обміну вуглеводів. Бере участь в біосинтезі нуклеїнових кислот.

Гексози. Загальна формула гексоз – C6H12O6. Зустрічаються у вільному стані, у складі різних полісахаридів та інших сполук. Діляться на альдо- і кетогексози. У водних розчинах існують у вигляді декількох таутомерних (ациклічних і циклічних) D- і L-форм, а також рацематів. В природі переважають D-форми:

 

Циклічна форма виникає в результаті таутомерії ациклічної форми моносахариду і зображається у вигляді п’ятичленних (фуранозних) або шестичленних (піранозних) кілець, а також в „перспективному вигляді”:

 

У результаті таутомерії утворюється глюкозидний гідроксил, який володіє високою реакційною здатністю. Альдогексози і альдопентози можуть існувати в п'яти різних ізомерних формах, наприклад:

 

D(+)-Глюкоза. Широко поширена в природі. Зустрічається у вільному і зв'язаному станах. Входить до складу овочів і фруктів. Виноград містить 17 – 20% глюкози (звідси назва виноградний цукор). Складова частина оліго- і полісахаридів. Глюкоза поступає в організм у складі кормів, утворюється при гідролізі складних вуглеводів і в результаті неоглікогенеза. Глюкоза – обов'язкова складова частина крові людини і тварин. Розчини глюкози використовуються в медицині і ветеринарії для внутрішньовенних ін'єкцій.

Глюкоза існує у вигляді a-D(+)- і b-D(+)-глюкози (питоме обертання +113 і +19°), а також рацемата двох правих ізомерів (питоме обертання +52,7°) у водному розчині. В організмі тварин знаходяться похідні глюкози – глюконова і глюкуронова кислоти, глюкозамін, а при окисленні глюкози азотною кислотою утворюється цукрова кислота.

Фосфорні похідні глюконової кислоти є проміжними продуктами пентозного циклу, глюкуронова кислота зустрічається у вільному стані в крові і сечі, бере участь в нейтралізації отруйних продуктів обміну речовин (фенолу, скатолу, індолу та ін.), які виводяться з сечею у вигляді парних сполук. Крім того, глюкуронова кислота входить до складу мукополісахаридів. D-Глюкозамін є складовою частиною глікопротеїдів, мукополісахаридів і хітину.

D(+)-Галактоза. Зазвичай утворюється в результаті гідролізу в харчовому каналі оліго- і полісахаридів їжі. Входить до складу лактози, галактогена, мукопротеїдів, деяких ліпідів і бактерійних полісахаридів. Оптично активна (питоме обертання a-D(+)-галактози – +80,2°). Зброджується лактозними дріжджами. Може служити сировиною для перетворення в глюкозу або у вітамін С. При окисленні галактози утворюється галактуронова кислота – складова частина камеді, слизу, пектинових речовин. При взаємодії галактози і аміаку утворюється галактозамін, з якого синтезується хондроітинсірчана кислота. Похідними галактози є галактонова і слизова кислоти:

 

Галактоза є поживним середовищем для деяких мікробів. Використовується в кондитерській промисловості.

D(+)-Mаноза. У вільному стані зустрічається рідко (в плодах цитрусових, анакардієвих і каринокарпових). В організмі тварин утворюється в результаті гідролізу мананів кормів. Маноза – складова частина полісахаридів деяких бактерій, дріжджів і цвілевих грибів; входить до складу слизу харчового каналу, слини, глікопротеїдів крові. В природі існує у вигляді D(+)-форми. Питоме обертання манози – +14,2°. Зброджується дріжджами. Використовується як поживне середовище для деяких мікроорганізмів.

D(–)-Фруктоза. У вільному стані зустрічається у фруктах, овочах і, особливо, в медові (40 – 42%). Є складовою частиною сахарози, стахіози і фруктозанів. В організмі тварин утворюється в результаті гідролізу складних цукрів у харчовому каналі. В тканинах може таутомеризуватися в глюкозу і інші моносахариди, необхідні для організму. Її ефіри (фруктозо-6-фосфат і фруктозо-1,6-дифосфат) є проміжними продуктами вуглеводного обміну. Обертає площину поляризованого світла вліво на –92° (тому її часто називають левулозою). Існує в ациклічній і циклічній формах:

Гептози. Загальна формула – C7H14O7. Діляться на альдози і кетози. Є складовою частиною деяких полісахаридів, зокрема, грамнегативних мікробів. Особливий інтерес представляють кетогептози, знайдені в листі деяких рослин, в проміжних продуктах фотосинтезу і пентозного циклу:

Похідні моносахаридів. Серед похідних моносахаридів важливу групу сполук становлять аміноцукри.

Аміноцукри. Це похідні вуглеводів, які утворюються в результаті заміщення однієї або кількох гідроксильних груп аміногрупою. В організмах людини і тварин часто зустрічаються гексозамінопохідні глюкози (глюкозамін) і галактози (галактозамін) (див. вище). Аміноцукри входять до складу так званих гетеро полісахаридів – гепарину, гіалуронової кислоти, хондроітинсірчаної кислоти, а також до складу глікопротеїдів.

Аміноцукри – кристалічні речовини, добре розчинні у воді. Вони є сильними основами. При взаємодії з кислотами утворюють стійкі солі. При взаємодії з лугами і азотною кислотою вони не піддаються дезамінуванню.

Важливе значення в організмі мають похідні аміносахарів – нейрамінова і сіалові кислоти та деякі інші.

Нейрамінова кислота. Утворюється в результаті альдольної конденсації гексозаміну і піровиноградної кислоти. Оскільки нейрамінова кислота містить дев'ять вуглецевих атомів, то її ще називають нонулозаміновою кислотою. Нейрамінова кислота існує в ациклічній і циклічній формах.

Нейрамінова кислота міститься майже в усіх органах і тканинах організму людини і тварин. Вона входить до складу глікопротеїдів, гліколіпідів, білків сироватки крові.

При окремих патологічних станах вміст нейрамінової кислоти в тканинах і рідинах організму значно змінюється. Так, при інфекційних і психічних захворюваннях, захворюванні на рак вміст нейрамінової кислоти значно підвищується.

Нейрамінова кислота – нестійка сполука, її часто добувають у вигляді метилглікозиду і сіалових кислот м'яким кислотним або ферментативним гідролізом таких природних сполук, як орозомукоїди крові, овомуцин яйця, трисахарид молока – нейрамініллактоза і гангліозиди.

 

Сіалові кислоти – це ацильні похідні нейрамінової кислоти. Залежно від природи кислоти, кількості кислотних залишків, приєднаних до нейрамінової кислоти, місця їх приєднання розрізняють кілька видів сіалових кислот. Якщо залишок відповідної кислоти приєднується до азоту амінної групи нейрамінової кислоти, то таку сіалову кислоту називають N-ацилнейраміновою кислотою. У тих випадках, коли залишок якоїсь кислоти приєднується до азоту амінної групи і до кисню гідроксильної групи нейрамінової кислоти, тоді сіалову кислоту називають N,О-діацилнейраміновою:

 

В організмі найчастіше містяться N-ацетилнейрамінова, N,О-діацетилнейрамінова і N-гліколілнейрамінова кислоти. У першому і другому випадках нейрамінова кислота зв'язана з залишком оцтової кислоти, у третьому – з залишком гліколевої кислоти.

Сіалові кислоти виявлені в усіх тканинах і рідинах організму. Вони входять до складу молекул олігосахаридів, нуклеотидолігосахаридів, гліколіпідів і глікопротеїдів. Цілий ряд ферментів і гормонів є глікопротеїдами, які містять сіалові кислоти.

Біологічна роль сіалових кислот вивчена ще дуже мало. Однак одержані на сьогоднішній день дані свідчать про те, що сіалові кислоти відіграють важливу біологічну роль у багатьох процесах. Так, доведено, що сіалові кислоти беруть участь у процесах збудження нервової тканини, транспорті іонів, перетворенні фібриногену на фібрин та ін. Наявність сіалових кислот у складі біополімерів зумовлює їх фізико-хімічні властивості, а в ряді випадків і біологічну активність. Наприклад, відщеплення сіалової кислоти від гормонів гонадотропіну й еритропоетину призводить до втрати ними біологічної активності. Припускають, що сіалові кислоти відіграють важливу роль у процесі взаємодії вірусу і клітини.

Встановлено, що при деяких захворюваннях – злоякісних пухлинах, променевій хворобі, ревматизмі вміст сіалових кислот у крові помітно підвищується. Тому визначення їх кількості в крові має важливе діагностичне значення.

Б. Полісахариди

Складні вуглеводи ділять на олігосахариди і власне полісахариди. Олігосахариди – це вуглеводи, молекули яких містять від 2 до 10 залишків молекул моносахаридів. Найбільший інтерес представляють ди-, три- і тетрасахариди.

Дисахариди (біози). Це вуглеводи, молекули яких при гідролізі розщеплюються на дві молекули гексоз.

Розрізняють дисахариди мальтозного (мальтоза, лактоза, целобіоза, гентибіоза, мелибіоза, тураноза) і трегалозного (трегалоза, сахароза) типів зв'язку. При мальтозному типі зв'язку молекула дисахарида утворюється з двох молекул моносахаридів через кисневий місток від глікозидного гідроксила одного моносахариду і гідроксила четвертого атома вуглецю другого моносахариду. При утворенні молекули дисахарида трегалозного типу зв'язку кисневий місток виникає за рахунок обох глікозидних гідроксилів. У молекулі дисахаридів мальтозного типу зберігається вільна напівацетальна гідроксильна група, яка може переходити в альдегідну форму, надаючи дисахариду відновлюючі властивості.

При найменуванні дисахаридів за звичай користуються назвами (лактоза, мальтоза, сахароза), що історично склалися, рідше – раціональними і за номенклатурою ЮПАК. Наприклад, за номенклатурою ЮПАК лактозу слід називати 4-О-b-D-галактопіранозил-a-D-глюкопіраноза.

Для відновлюючих дисахаридів характерні всі хімічні реакції, які типові для альдоз і кетоз, що мають вільний глікозидний гідроксил (відновлення Фелінгової рідини, реакція Троммера та ін.). Дисахариди – тверді кристалічні речовини, добре розчинні у воді, оптично активні, солодкі на смак, здатні до кислотного або ферментативного гідролізу, можуть утворювати прості і складні ефіри, сахарати та ін.

Мальтоза (солодовий цукор). Відноситься до дисахаридів типу глікозидо-глюкози. Молекула мальтози складається з двох залишків a-D-глюкопіранози, які сполучені між собою в положенні 1,4:

 

Мальтоза у вільному стані міститься в пророслих зернах ячменю (солоді), жита, пшениці і інших злаків, а також в томатах і нектарі багатьох рослин. Мальтоза є проміжним продуктом гідролізу крохмалю, глікогену та деяких інших полісахаридів в харчовому каналі. Питоме обертання мальтози +136°. Легко піддається спиртовому бродінню з утворенням етанолу.

Лактоза (молочний цукор). Молекула лактози утворена залишками D-галактози і D-глюкози. Існує у вигляді a- і b-форм. Є обов'язковою складовою частиною молока всіх ссавців. Входить до складу глікопротеїдів і гліколіпідів, а також деяких полісахаридів. Рівнозначна суміш a- і b-форм має питоме обертання +52,2°. Існує в ациклічній і циклічній формах:

Одержують лактозу упарюванням молочної сироватки. Лактоза добре засвоюється організмом. В тонкій кишці під впливом ферменту лактази розщеплюється до галактози і глюкози. Піддається молочнокислому бродінню. Може використовуватись як наповнювач порошків і таблеток.

Целобіоза. Як проміжний продукт гідролізу клітковини утворюється в харчовому каналі травоїдних тварин (особливо в передшлунках жуйних) під впливом бактерійного ферменту целюлази. Молекула целобіози складається із залишків a- і b-глюкоз. Раціональна назва – b-глюкозидоглюкоза, за номенклатурою ЮПАК – 4-О-b-D-глюкопіранозил-D-глюкоза або О-b-D-глюкопіранозил-(1®4)-b-D-глюкопіраноза. У вільному стані целобіоза знайдена в пророслих зернах злаків, кісточках абрикоса, патоці деяких дерев. Оптично активна, питоме обертання +34,6°. Існує в ациклічній і циклічній формах:

Трегалоза (мікоза, або грибний цукор). Міститься в тканинах грибів, сокові ясена, водоростях, лишайнику, гемолімфі черв'яків і комах, дріжджах. Є складовою частиною оболонки туберкульозної палички. Молекула трегалози складається з двох залишків D-глюкози, сполучених глікозидним зв'язком 1®1. Вона не відновлює фелінгової рідини і не вступає в інші реакції, характерні для дисахаридів які мають глікозидний гідроксил. При гідролізі (ферментативному і кислотному) розщеплюється до глюкози. Дисахарид існує в циклічній формі.

Сахароза (буряковий, або очеретяний, цукор). Міститься у всіх зелених рослинах. Утворюється в результаті реакції фотосинтезу в листі, потім відкладається в бульбах, коренях, цибулинах, стеблах, плодах. Багато сахарози в коренеплодах цукрового буряка (до 27%), сокові цукрового очерету і стеблах сорго (14 – 26%). Молекула сахарози складається із залишків глюкози і фруктози, сполучених між собою кисневим містком, який виникає за рахунок двох глікозидних гідроксилів:

 

За номенклатурою ЮПАК сахароза називається a-D-глюкопіранозил-b-D-фруктофуранозидом. Відноситься до невідновлюючих фелінгову рідину дисахаридів. Питоме обертання +66,53°. При гідролізі (ферментативному або кислотному) молекула сахарози розщеплюється на глюкозу і фруктозу. Виникає інвертний цукор, який обертає площину поляризації вліво. Питоме обертання інвертного цукру – 39,7°. Гідроліз сахарози відбувається в тонкій кишці під впливом ферменту інвертази (сахарази). Природним інвертним цукром є бджолиний мед (98 – 99% цукру). Сахароза – цінний продукт живлення. Використовується у фармакології для виготовлення порошків, мікстур і інших лікарських засобів. В акушерській практиці її застосовують для активізації скорочення матки.

Трисахариди. Загальна формула – C18H32O16. Найбільш поширена рафіноза, що складається із залишків галактози, глюкози і фруктози (О-a-D-галактопіранозил-(1®6)- a-D-глюкопіранозил-b-D-фруктофуранозид). Міститься в цукровому буряці, насінні бавовника, зародках насіння злаків, манні евкаліпта і інших рослинах. Високий відсоток рафінози міститься в мелясі. Оптично активна (+105,2°). В харчовому каналі тваринного організму молекула трисахариду розщеплюється двома ферментами – a-галактозидазою (відщеплює залишок галактози) і інвертазою (розщеплює глікозидний зв'язок між залишками глюкози і фруктози):

Тетрасахариди. Загальна формула – С24Н42О21. Прикладом тетрасахаридів є стахіоза, невідновлюючий резервний вуглевод рослин, який складається з двох залишків галактози, залишку глюкози і залишку фруктози. За номенклатурою ЮПАК стахіоза називається О-a-D-галактопіранозил-(1®6)-О-a-D-галактопіранозил-(1®6)-О-a-D-глю-копіранозил-(1®2)-b-D-фруктофуранозид. Міститься в насінні жовтого люпину, гороху, сої, чечевиці, бульбах земляної груші, манні ясена, буряковому жомі. Служить донором і акцептором галактози в реакціях трансглікозилювання.

Власне полісахариди ділять на гомо- і гетерополісахариди.

Гомополісахариди (C6H10O5)n. Вуглеводи, молекули яких побудовані з великого числа залишків одного моносахариду: глюкоза, фруктоза, маноза, ксилоза та ін. Вони є запасними поживними речовинами (крохмаль, глікоген, інулін), служать структурною основою тканин (клітковина), виконують захисні функції (хітин). Для гомополісахаридів характерна велика молекулярна маса і складні фізико-хімічні властивості. За хімічною будовою вони є поліглікозидами – їх молекули утворюються у результаті з'єднання мономерів за допомогою глікозидних зв'язків в лінійні або розгалужені ланцюги. Залежно від хімічної природи мономерів гомополісахариди класифікують на ряд груп: глюкани, манани, галактани, фруктани, ксилани, арабінани. Найбільший практичний інтерес представляють крохмаль, глікоген, інулін, клітковина.

Крохмаль – утворюється в результаті реакцій фотосинтезу в клітинних органеллах (хлоро- і амілопластах) рослин, відкладається у вигляді запасних поживних речовин в листі, стеблах, цибулинах, бульбах і насінні. В клітинах виявляється у вигляді зерен різної форми (овальної, сферичної, неправильної), величини і шаруватості. Вміст крохмалю в зерні рису досягає 80%, пшениці – 75, кукурудзи – 72, жита – 70, ячменю – 65, вівса – 58, проса – 57, в бульбах картоплі – 12 – 25%. Зерна крохмалю містять деяку кількість білка, ліпідів, жирних кислот, мінеральних солей і фосфорної кислоти.

Крохмаль – білий аморфний порошок, не розчиняється в холодній воді, з йодом дає синє забарвлення, у воді набухає, при нагріванні водного розчину крохмальні зерна лопаються, утворюючи клейстер. Водні розчини крохмалю здатні обертати площину поляризованого світла управо на 196 – 205°.

Крохмаль складається з двох фракцій: амілози (має лінійну будову) і амілопектина (має розгалужену будову). Амілоза складає 10 – 30%, амілопектин – 70 – 90% загальної маси крохмалю. Вміст обох фракцій в крохмалі залежить від виду і сорту рослини, погодних умов, термінів збирання врожаю і т.д. В деяких сортах кукурудзи вміст амілози в крохмалі досягає 82%. Крохмаль яблук повністю складається з амілози. Амілоза і амілопектин відрізняються між собою деякими властивостями, кількісним складом мономерів і структурою молекули.

Молекула амілози складається з 200 – 1000 залишків глюкози, сполучених між собою глікозидними зв'язками по типу 1,4:

 

Молекулярна маса амілози – 20 тис. – 1 млн. Амілоза легко розчиняється у воді. При додаванні розчину йоду забарвлюється в темно-синій колір.

Амілопектин в гарячій воді утворює клейстер, після охолодження – гелеподібну масу. З розчином йоду дає червоно-фіолетове забарвлення. Молекула амілопектину побудована з 5000 – 6000 залишків глюкози, сполучених між собою по типу 1,4 і 1,6:

 

Молекулярна маса амілопектина – від 100 тис. до декількох мільйонів. На кожне розгалуження в середньому доводиться 8 – 10 залишків глюкози. На відміну від амілози, для якої характерна ниткоподібна форма, молекула амілопектина має сферичну конфігурацію.

Крохмаль може піддаватися кислотному і ферментативному гідролізу. Так, в харчовому каналі під впливом ферментів амілази і мальтази молекула крохмалю розщеплюється до декстринів, мальтози і глюкози. Калорійність крохмалю висока – близько 4 ккал/г.

Крохмаль – цінний продукт живлення, використовується також для виготовлення лікарських препаратів і в побуті.

Глікоген – тваринний крохмаль, найважливіша резервна речовина тканин і клітин організму людини і тварин. Найбільше глікогену міститься в тканинах печінки (2 – 10% загальної маси), скелетних м'язах (0,2 – 2 %), дещо менше – в інших органах і тканинах.

Глікоген – біла аморфна речовина, добре розчиняється в гарячій воді, розчин опалесціює, обертає площину поляризованого світла на +196°. З розчином йоду дає забарвлення від червоно-фіолетового до червоно-коричневого. Молекула глікогену побудована з 2400 – 300000 залишків глюкози. Молекулярна маса глікогену коливається від 400 тис. до 50 млн.

Молекула глікогену має гіллясту будову. Де залишки a-D-глюкози сполучені між собою по типу 1,4 і 1,6 (на 12 зв'язків 1,4 в середньому доводиться один 1,6 зв'язок).

Глікоген є сумішшю декількох полісахаридів з різним ступенем полімеризації. Будова молекули глікогену у тварин, що належать до різних типів і класів, різна. В харчовому каналі глікоген розщеплюється ферментами амілазою і мальтазою до a-D-глюкози. Розкладання тканинного глікогену найчастіше відбувається фосфоролітично.

Інулін – природний полімер фруктози. Резервний енергетичний полісахарид багатьох сімейств рослин: фіалкових, складноцвітих, лобелій, лілійних та ін. Багато інуліна знаходять в бульбах топінамбура (земляної груші) і жоржини – до 40 – 80% загальної сухої маси. Молекула інуліна побудована із залишків фруктози (94 – 97%) і глюкози (3 – 6%), які сполучені між собою по типу 1,2 зв'язку:

 

Інулін – біла аморфна речовина, солодка на смак, добре розчиняється в теплій воді, обертає площину поляризованого світла на –39°, має молекулярну масу 5 – 6 тис., добре засвоюється організмом людини і тварин. Цінна кормова речовина. Іноді (при цукровому діабеті) застосовується з лікувальною метою як замінник крохмалю, сахарози і глюкози.

Клітковина, або целюлоза, – полісахарид – основа оболонок рослинних клітин. У деревині міститься разом з геміцелюлозами, зокрема з пентозанами і лігніном. Клітковина – головна складова частина рослинних кормів. У листі рослин міститься до 30%, деревині – до 40 – 70, у волокні бавовни – до 95 – 98% чистої клітковини.

Молекула клітковини складається із залишків a- і b-D-глюкози, сполучених між собою глікозидними зв'язками по типу 1,4. Структурною одиницею полісахариду є целобіоза. Її кількість в молекулі досягає великих величин – 3 – 6 тис., що відповідає молекулярній масі 10 – 20 млн. Молекула клітковини – лінійний полімер:

 

Клітковина – біла волокниста речовина, без смаку, запаху, не розчиняється у воді. Спеціальних ферментів, що розщеплюють клітковину, організм людини і тварин не виробляє. В харчовому каналі (в передшлунках жуйних і ободовій кишці непарнокопитних) клітковина гідролізується під впливом бактерійних ферментів (целюлази і целобіази) до a-D- і b-D-глюкози. Останні піддаються різним видам бродіння та іншим перетворенням, після чого використовуються для структурних і енергетичних потреб організму. Клітковина є своєрідним подразником шлунково-кишкової секреції.

Клітковина широко використовується в будівництві, деревообробній і текстильній промисловості, при виробництві паперу, фото- і кіноплівок, штучних волокон, пластмас, ін.

Гетерополісахариди. Це складні вуглеводи, молекули яких побудовані із залишків різних моносахаридів, їх похідних та інших сполук. В організмі виконують різні функції: опорні (хондроітинсірчана кислота, капсулярні полісахариди мікробів), регулюють надходження поживних речовин в тканини і клітини (гіалуронова кислота), захищають організм і його тканини від різних шкідливих чинників (гепарин) і т.д. Гетерополісахариди ділять на мукополісахариди – складні вуглеводи слизового характеру – і глюкополісахариди. У свою чергу мукополісахариди ділять на кислі і нейтральні.

З кислих мукополісахаридів розглянемо гіалуронову, хондроітинсірчану кислоти і гепарин.

Гіалуронова кислота. Це гетерополісахарид, побудований із залишків молекул глюкуронової, оцтової кислот і глюкозаміна. Структурною одиницею вуглеводу є a-глюкуронідо-N-ацетилглюкозамін:

 

Молекулярна маса вуглеводу коливається від 200 тис. до декількох мільйонів. Гіалуронова кислота є хімічною основою склоподібного тіла ока, пупкового канатика, сіновії, оболонки яйцеклітини, капсул деяких мікробів, її багато в клітинах деяких пухлин і т.д. Розчини гіалуронової кислоти дуже в'язкі. В тканинах виконує роль склеюючої, „цементуючої” речовини, служить бар'єром, що оберігає клітини від проникнення в них мікробів і отруйних речовин, бере участь в регуляції надходження води та інших сполук в клітини, як поліелектроліт регулює обмін іонів. Полісахарид характеризується високим ступенем метаболізму – період напіврозпаду його молекули рівний двом дням. Обмін гіалуронової кислоти порушується при багатьох патологічних станах: мікседемі, ревматизмі, бактерійних інфекціях.

Хондроітинсірчана кислота – продукт полімеризації N-ацетилгалактозамінсульфата і глюкуронової кислоти, сполучених між собою b-1,3- і b-1,4-глікозидними зв'язками:

 

Хондроітинсірчана кислота – обов'язкова складова частина хрящів (до 40% сухої маси), кісток, основної речовини сполучної тканини, серцевих клапанів, стінок кровоносних судин, шкіри та ін. В організмі виконує опорні функції. Її молекулярна маса – 50 – 200 тис., в комплексі з колагеном – 40 – 50 млн. Бере участь в іонному обміні і регуляції надходження поживних речовин у клітини. Період напіврозпаду молекул кислоти в основній речовині шкіри – 8, хряща – 16 діб.

Гепарин – мукополісахарид, молекула якого утворена залишками a-D-глюкозаміна, глюкуронової і сірчаної кислот.

Молекулярна маса гепарина – 15 – 20 тис. Гепарин – білий аморфний порошок, розчинний у воді, стійкий до нагрівання. В організмі виробляється тучними клітинами і частково базофілами. Пригнічує утворення тромбокінази та інактивує тромбін, знижує вміст в крові холестерину, знижує артеріальний тиск. Багато гепарина міститься в тканинах печінки (до 100 мг на 1 кг маси), дещо менше – в тканинах легень, селезінки, щитовидної залози, м'язів. Натрієва сіль гепарина застосовується як антикоагулянт при переливанні крові і тромбозах.

Нейтральні мукополісахариди – це складні вуглеводи, побудовані із залишків нейрамінової і сіалових кислот. Зустрічаються у всіх органах і тканинах, секретах і сльозах. Знаходяться у вигляді сполук з білками. Їх вміст в тканинах набагато більший, ніж кислих мукополісахаридів. Вивчені недостатньо. Служать компонентами різних „нейтральних” муко- і глікопротеїдів, у тому числі багатьох ферментів і гормонів. Деякі з нейтральних мукополісахаридів визначають для організму групу крові.

Глюкополісахариди мають схожу будову з кислими мукополісахаридами, але в їх молекулах відсутні залишки молекули гексозаміна. Представником глюкополісахаридів є пектинові речовини.

Пектинові речовини – це високомолекулярні сполуки, побудовані із залишків молекул галактуронової кислоти і метилового спирту:

 

Містяться в бульбах і стеблах рослин, в ягодах і фруктах у вигляді нерозчинної комплексної сполуки – протопектину. Останній перетворюється на пектин під впливом розбавлених розчинів кислот або ферменту протопектинази. Ними особливо багатий цукровий буряк і морква (2,5%). Молекулярна маса пектину – 20 – 50 тис. Пектинові речовини використовуються в хлібопеченні, кондитерській і консервній промисловості, в сироварінні, при виготовленні кровоспинних засобів і як антисептик. Сировиною для їх отримання служить лушпиння соняшників, жом та ін.

Специфічні полісахариди мікробів. Ці полісахариди складають основу капсул деяких мікробів або є продуктами їх життєдіяльності. Прикладом є леван, молекула якого побудована із залишків метильованої фруктофуранози.

До складу організмів входять і інші полісахариди, хімічна будова яких була вивчена недостатньо.

Агар-агар. Цей високомолекулярний вуглевод зустрічається в багатьох водоростях, які використовуються у харчових і кормових цілях. Молекула складається з двох полісахаридів – агарози і агаропектина, а також домішок деяких інших сполук. Елементарними одиницями є D- і L-галактопіранози, сполучені між собою 1,3-глікозидними зв'язками. Використовується в мікробіології для виготовлення поживних середовищ і в кондитерській промисловості.

Геміцелюлоза. Це – полісахарид, супутний клітковині. Молекулярна маса коливається від 1 до 12 тис. Міститься в деревині, соломі, висівках (6 – 27%). Залежно від того, які моносахариди входять до складу вуглеводу, геміцелюлози ділять на манани, галактани, арабани, ксилани. При гідролізі деяких геміцелюлоз утворюються уронові кислоти.

Гуміарабік – тверда прозора маса, що виділяється деякими видами акацій. При гідролізі утворюються галактоза, рамноза, арабіноза і глюкуронова кислота. Поліелектроліт. Молекулярна маса – 20 – 100 тис. Застосовується як ліки при отруєнні їдкими лугами і як емульгатор масляних емульсій.

Декстран – полісахарид бактерійного походження, полімер глюкози. Молекулярна маса вуглеводу досягає 10 млн. В лінійній частині молекули декстрана залишки глюкози сполучені між собою 1,6-, в бічних відгалуженнях – 1,4-, 1,3- і 1,2-глікозидними зв'язками. Полісахарид одержують при культивуванні на штучних середовищах мікробів роду Leuconostos. Застосовується в медицині як замінник плазми. Використовується в хроматографії. В організмах зустрічаються також і інші полісахариди: трагакант, карайя, альгін, ін.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 307; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.161.226 (0.084 с.)