Электронно-колебательные спектры и полосы сплошного спектра. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электронно-колебательные спектры и полосы сплошного спектра.



Весьма распространёнными фрагментами молекулярных спектров являются серии т.н. колебательных линий, сгущающихся в сторону уменьшения длин волн, и переходящих в полосу сплошного спектра. При попадании энергии возбуждения в такой сплошной участок, молекула диссоциирует. Причём, даже в случае одинарной связи, таких участков сплошного спектра может быть несколько – что, как отмечалось выше, порождает парадокс с неоднозначностью «энергии химической связи».

Между тем, этот феномен находит простое качественное объяснение на основе модели химической связи (5.7). Примем во внимание то обстоятельство, что, при циклических переключениях энергии возбуждения у пары связанных атомов, по крайней мере, один из них может пребывать не в основном своём состоянии, а в одном из вышележащих стационарных. При этом, как отмечалось ранее (5.1), энергия возбуждения у этого атома, т.е. энергия переменного зарядового разбаланса, отсчитывается от нуля, соответствующего задействованному стационарному уровню. Если эта энергия возбуждения безостановочно циклически перебрасывается на соседствующий атом и обратно, то пребывание атомарной валентной связки «протон-электрон» на возбуждённом стационарном уровне может длиться неопределённо долго, обеспечивая устойчивую химическую связь.

Теперь обратимся к Рис.5.8, на котором схематически изображены стационарные уровни энергии у двух связанных атомов, А и В. Пусть атом В пребывает на стационарном уровне В1, а атом А – в основном состоянии А0. Пусть энергия ионизации атома В с уровня В1 меньше, чем энергия уровня А1 в атоме А. Можно видеть, что энергия возбуждения Е *, которой обмениваются связанные атомы, имеет выделенные резонансные значения, которые соответствуют переходам в атоме В – с уровня В1 на вышележащие уровни В2,В3, и т.д. Эти резонансные значения и должны давать серию молекулярных линий поглощения, сгущающихся к порогу диссоциации D 0 – который достигается, когда энергия возбуждения Е * становится равна разности энергий уровней В¥ и В1. Диссоциация молекулы АВ является при этом следствием ионизации атома В, и можно видеть, что, при превышении энергией возбуждения Е * разности энергий уровней В¥ и В1, начинается участок сплошного спектра, схематически обозначенный косой штриховкой. Верхняя граница этого участка должна соответствовать энергии уровня А1 – которая, как мы оговорили выше, превышает энергию ионизации атома В с уровня В1. Впрочем, нередки ситуации, когда энергия уровня А1 меньше, чем энергия ионизации атома В с уровня В1. Тогда порог диссоциации не достигается, и полоса сплошного спектра отсутствует.

 

Рис.5.8

 

Действительно, если атом А приобретает энергию возбуждения Е *, которая несколько больше энергии уровня А1, то атом А оказывается в стационарном возбуждённом состоянии А1, а от энергии возбуждения, как энергии переменного зарядового разбаланса, остаётся разность между энергией Е * и энергией уровня А1. Химическая связь может продолжать поддерживаться при циклическом обмене атомов этой остаточной энергией. По аналогии с вышеизложенным, для этой остаточной энергии также должны иметь место резонансные значения, соответствующие переходам между стационарными уровнями в атоме В. Таким образом, проясняется происхождение серий молекулярных линий поглощения, которые соответствуют таким большим исходным энергиям возбуждения, которые могут в разы превышать энергию ионизации атома В из его основного состояния.

Заметим, что мы качественно пояснили происхождение серий молекулярных линий и полос сплошного спектра лишь для одного частного случая: атом В пребывает в первом стационарном состоянии, а варьируется энергия возбуждения Е *, которую приобретает атом А. Рассмотрение других вариантов даёт гораздо более богатую модель спектра молекулы АВ.

Предложенная модель даёт естественное качественное объяснение того, что называется электронно-колебательными спектрами молекул. Эта модель хороша уже тем, что она легко разрешает парадокс, который до сих пор не нашёл объяснения в рамках традиционного подхода, а именно: почему двухатомная молекула с одинарной связью, которая диссоциирует при энергии возбуждения, попадающей в континуум в области, скажем, 3 эВ, отнюдь НЕ диссоциирует при энергии возбуждения, скажем, 15 эВ. Однако, мы изложили идеализированную картину, при которой положения колебательных серий линий и полос на спектрограммах в точности соответствовали бы положениям характеристических линий атомов, входящих в состав молекулы. В действительности, точного соответствия не наблюдается, хотя специалисты давно обращали внимание на «генетическую связь между атомными и молекулярными уровнями».

В частности, предложенная модель объясняет, в первом приближении, происхождение участка излучения Н2 в области 7.4-10.1 эВ (см. Рис.5.6), где поглощение Н2 отсутствует. Заметим, что верхняя граница этого участка почти совпадает с энергией первого стационарного уровня атома водорода, равной 10.2 эВ. Логично допустить, что в названном спектральном диапазоне могут излучать те молекулы Н2, у которых один из атомов находится на первом стационарном уровне. Происходящие при этом процессы поясним с помощью Рис.5.7. До момента излучения t2, атом p1-e1 находится в основном состоянии и имеет энергию зарядового разбаланса Е *; атом же p2-e2 находится в первом стационарном состоянии и не имеет энергии зарядового разбаланса. В момент t2, при переформировании валентных связок, атом, включающий протон p2, оказывается в основном состоянии и с энергией зарядового разбаланса Е *. Таким образом, энергия связи в этом атоме увеличивается на величину разности между 10.2 эВ и Е * - что и означает излучение соответствующего кванта молекулой.

О т.н. вращательных спектрах.

При наличии у атома энергии возбуждения, работает Навигатор (3.4), который производит поиск атома-адресата, которому эта энергия возбуждения может быть переброшена. Мы полагаем, что, в ходе этого поиска, пространство вокруг возбуждённого атома сканируется «поисковыми волнами», которые имеют не физическую, а чисто программную природу. Вначале эти «волны» являются сферическими, расходясь от ядра возбуждённого атома со скоростью света в вакууме – будучи разделёнными промежутками времени, равными периоду колебаний возбуждения. Но каждый атом, накрываемый любой из этих первичных волн, при работе Навигатора считается источником вторичных волн с той же периодичностью – и в те места, где первичные и вторичные волны пересекаются, расчётная вероятность переброса увеличивается. Отсюда, для случая соседствующих атомов, вытекает резонансное соотношение, благодаря которому спектральный прибор, имеющий достаточно высокое разрешение, обнаружит расщепление молекулярной линии на множество сублиний.

В самом деле, пусть линия имеет среднюю длину волны l=6000 Ангстрем, пусть межъядерное расстояние L =2.5 Ангстрем. Когда первая «поисковая волна» накрывает ядро невозбуждённого атома, от него начинает расходиться вторичная волна, которая накрывает ядро возбуждённого атома, от которого начинает расходиться новая вторичная волна, и т.д. Вторичные волны будут бегать между ядрами, и пусть очередная из них, исходящая от ядра возбуждённого атома, окажется в фазе с исходящей от него второй первичной волной. Пусть, при совместном накрытии ими ядра невозбуждённого атома, условие для идентификации адресата окажется выполненным, и квантовый переброс энергии возбуждения будет произведён. Поскольку первичные и вторичные «поисковые волны» движутся с одинаковой скоростью – скоростью света в вакууме – то для изложенного сценария необходимо, чтобы отношение длины волны l к удвоенному межъядерному расстоянию 2 L являлось целым числом. Отсюда и вытекает возможность расщепления линии на сублинии, у которых длины волн разделены промежутками по 2 L. Так, в рассматриваемом случае, отношение l/2 L составляет К =2400. Если энергию ~2.0 эВ, соответствующую длине волны l=6000 Ангстрем, поделить на К, то мы получим для энергетических интервалов между сублиниями величину ~8.3×10-4 эВ – которая характерна для вращательных спектров.

Полученное соответствие не следует рассматривать как доказательство того, что вращательные спектры обусловлены исключительно вышеописанными резонансами при циклическом обмене энергией возбуждения у пары связанных атомов. По-видимому, эти резонансы могут являться лишь одним из возможных механизмов, порождающих вращательные спектры. Но, если работает именно этот механизм, то знание величин интервалов между «вращательными» уровнями позволит, например, независимо определять межъядерные расстояния в молекулах.

Инфракрасный-микроволновый-радиочастотный резонансный ряд.

Если химическая связь, как изложено выше, представляет собой циклический процесс (5.7), при котором происходят перебросы переменного зарядового разбаланса в паре задействованных валентных связок «протон-электрон», то энергия возбуждения молекулы, т.е. энергия этого зарядового разбаланса, должна с очевидностью иметь ещё один набор резонансных значений. Для случая одинарной связи, эти резонансные значения определяются из условия, что на одном периоде колебаний зарядового разбаланса должны укладываться целые числа периодов связующих прерываний как у первого из связанных атомов, так и у второго, т.е.

(5.8)

где Ei 1 и Ei 2 – энергии ионизации первого и второго связанных атомов из стационарных состояний, в которых они пребывают, Е * - энергия возбуждения, M и N – целые числа. Если связана пара однотипных атомов, и если они пребывают в одинаковых стационарных состояниях, то Ei 1= Ei 2, и M=N, поэтому искомый ряд резонансных значений энергии возбуждения представляет собой последовательность частных от деления энергии ионизации на целые числа. Если же связаны разнотипные атомы, или если связанные однотипные атомы пребывают в различных стационарных состояниях, то Ei 1 и Ei 2 не равны друг другу, и практически невероятно, что они окажутся кратными – поэтому, строго говоря, в таком случае соотношения (2) не могут соблюдаться с абсолютной точностью. Но, при ненулевых ширинах энергетических уровней, на которых находятся связанные атомы, и при ненулевых ширинах линий искомых резонансов, подходящие пары чисел M и N непременно найдутся.

В любом из вышеперечисленных случаев, резонансным энергиям возбуждения будет соответствовать серия спектральных линий, сгущающихся в сторону увеличения длин волн (в отличие от «колебательных» линий, которые сгущаются в сторону уменьшения длин волн). Как можно видеть, линии резонансного ряда, о котором идёт речь, при достаточно больших длинах волн – т.е. в микроволновой или радиочастотной области – должны сливаться в сплошной спектр. Действительно, этот сплошной спектр хорошо известен специалистам по радиоспектроскопии. Между тем, этот сплошной спектр отнюдь не должен иметь места в рамках ортодоксального подхода – согласно которому, величины минимальных энергий возбуждения молекул дискретны, соответствуя вращательным квантам. Факт сплошного спектра молекулярного излучения-поглощения в длинноволновой области – важное свидетельство в пользу нашего подхода.

Характеристические инфракрасные спектры сложных молекул.

Хорошо известно, что молекулы сложных веществ – в газообразном, жидком, твёрдом состояниях, а также в растворах – дают характеристические наборы линий поглощения, лежащих в ИК-диапазоне, в области ~100-5000 см-1. Примечательно, что каждая такая линия поглощения соответствует химической связи между конкретной парой атомов или радикалов. Причём, спектральное положение каждой такой линии почти одинаково для самых различных молекул, в состав которых входит соответствующая пара атомов или радикалов. Характеристичность этих линий успешно используется в структурном анализе – так, методами ИК-спектроскопии, выявляются даже следовые количества специфических веществ.

Считается установленным, что эти характеристические линии обусловлены свободными механическими колебаниями пары связанных атомов или радикалов – около их равновесной конфигурации. Различают валентные колебания, при которых осциллирует расстояние между ядрами связанных атомов, и деформационные колебания, при которых осциллирует угол между линиями задействованных валентных связок «протон-электрон» (происходят колебания «излома» химической связи) – собственные частоты этих двух типов колебаний отличаются друг от друга. Логично допустить, что валентные и деформационные колебания возбуждаются, например, при столкновениях молекул.

Если вспомнить про т.н. колебательные спектры, то обращает на себя внимание следующее противоречие в традиционных представлениях. Считается, что колебательные спектры также обусловлены механическими колебаниями молекул. Но ведь свойства колебательных и характеристических спектров – принципиально разные. Для характеристических линий отчего-то не работает квантово-механический подход – ибо никаких серий характеристических линий не наблюдается, и, значит, о колебательных квантах здесь не может быть и речи. Более того: в своих различных «электронных» состояниях молекула должна иметь различные частоты собственных колебаний – и, единственно из-за этого, каждой химической связи должен был бы соответствовать набор линий в характеристических ИК-спектрах. Опять же, этого не наблюдается. Тот факт, что конкретной химической связи соответствуют одна-две линии в характеристических ИК-спектрах, мы рассматриваем как убедительное свидетельство о том, что в данном случае мы имеем дело действительно с механическими колебаниями молекул. Ведь, в самом деле, при конкретных параметрах механической колебательной системы, частота конкретного типа её собственных колебаний имеет единственное значение.

Подчеркнём, что характеристические ИК-спектры отражают участие молекул в электромагнитном взаимодействии, поэтому эти спектры не могут быть обусловлены чисто механическими осцилляциями связанных атомов или радикалов. Мы полагаем, что механические осцилляции накладывают дополнительную модуляцию на вибрирующий электрический диполь в химической связи (5.7) – что и даёт соответствующую линию поглощения электромагнитной энергии. Именно о таком происхождении характеристических ИК-линий свидетельствует тот факт, что их спектральные положения не являются абсолютно неизменными – они, в некоторой степени, «плавают» в зависимости от ряда факторов, так или иначе влияющих на «электромагнитное трение» у колеблющихся компонентов молекулы. Эти факторы, в частности, таковы: дисперсность (степень измельчения) исследуемого вещества, его агрегатное состояние, степень полярности растворителя и его кислотность или основность, а также способность или неспособность молекул исследуемого вещества образовывать водородные связи друг с другом.

Но, по большому счёту, положения характеристических ИК-линий для конкретных молекул можно считать, практически, неизменными. Это касается и возбуждённых молекул – которые, несомненно, тоже дают вклад в характеристическое поглощение. Мы усматриваем здесь прямое указание на то, что, при возбуждении молекулы, сохраняется её пространственная конфигурация – и, в частности, остаётся постоянной длина химической связи. Этот вывод вполне согласуется с указаниями на то, что и атомы, при наличии у них энергии возбуждения, не изменяют свои размеры (4.9).

 

 

О понятии «температура».

Едва ли можно составить ясное представление о том, что такое температура, на основе таких известных её определений, как «функция внешних параметров и энергии системы, которая для всех систем, находящихся в равновесии, при их соединении имеет одно и то же значение», или, ещё лучше: «производная от энергии тела по его энтропии». Тут требуются ещё и толкования, которые, вкратце, таковы. Температура тела тем выше, чем больше интенсивность хаотического движения частиц, составляющих тело, и тем выше, чем больше средняя энергия квантовых возбуждений в теле. При приведении в тепловой контакт двух тел, имеющих различные температуры, т.е. «горячего» и «холодного», в процессе выравнивания их температур происходит преимущественная передача энергии от «горячего» тела к «холодному».

На основе подобных толкований может создаться впечатление, что температура – это мера энергосодержания. Такое впечатление ещё более укрепляется законом о равнораспределении тепловой энергии по степеням свободы: на каждую из них приходится, как полагают, энергия E= (1/2) kT, где k – постоянная Больцмана, T – абсолютная температура. Однако, обманчива видимость прямой пропорциональности между энергией и температурой. Энергия является величиной аддитивной, а температура – неаддитивной. При соединении двух тел, имеющих одинаковые энергии, мы получаем удвоенную энергию, но при соединении двух тел, имеющих одинаковые температуры, мы не получаем удвоенной температуры. Работает закон сохранения энергии, но не работает закон сохранения температуры. Каким же образом неаддитивная величина, температура, может быть мерой аддитивной величины, энергии?

Это фундаментальное противоречие, на наш взгляд, устраняется, если допустить, что температура является не мерой энергии в той или иной форме, а мерой соотношения между величинами энергии в двух различных формах, которые образуют сопряжённую пару – их сумма остаётся постоянной, поскольку увеличение одной из них происходит за счёт уменьшения другой. Приведём поясняющий пример. Полагают, что если атом возбуждается в результате поглощения кванта энергии, то суммарная энергия атома увеличивается на величину энергии возбуждения. Но не следует забывать, что устойчивость атома имеет энергетическую меру: энергию связи – которая, на наш взгляд, принципиально положительна (1.3), как и любая форма физической энергии, которая непременно соответствует какой-либо форме движения. Из опыта достоверно известно, что, при возбуждении атома, энергия связи уменьшается на величину, равную энергии возбуждения. Т.е., в данном случае энергия возбуждения и энергия связи образуют сопряжённую пару энергий. По нашей логике, среднее положение «разделительных планок» между этими энергиями – для ансамбля атомов – соответствует величине температуры. При «поглощении» и «излучении» квантов энергии атомом, всего лишь сдвигается положение этой «разделительной планки», но сумма энергии возбуждения и энергии связи у атома остаётся постоянной (3.10) – равной энергии ионизации из основного состояния. Таким образом, при «поглощении» кванта, атом не приобретает энергию сверх той, которую он уже имел, а, при «излучении» кванта, атом не отдаёт нисколько из той энергии, которую он имеет. В частности, при лазерной обработке образца, температура в зоне термического воздействия повышается, но при этом никакого переноса энергии в образец по лазерному лучу не происходит. Этот вывод покажется абсурдным для тех, кто хорошо усвоили учение о свете, как о летящих фотонах. Но экспериментальные реалии говорят об абсурдности как раз этого учения: фотонов, как летящих порций энергии, не существует в природе (3.11). По логике «цифрового» мира, происходят всего лишь скоррелированные квантовые скачки (3.10): у одного атома «разделительная планка» между энергиями возбуждения и связи перескакивает вниз, а у другого она перескакивает вверх – что порождает иллюзию передачи кванта энергии с одного атома на другой. Эти квантовые скачки происходят в полном согласии с принципом автономных превращений энергии квантовых пульсаторов (4.4): энергия связи у атома появилась за счёт уменьшения собственных энергий (т.е., масс) у связуемых электрона и протона (4.9), а энергия возбуждения у них появляется за счёт уменьшения их энергии связи (5.1).

Согласно тому же принципу автономных превращений энергии, нельзя сообщить микрочастице кинетическую энергию, но можно превратить в её кинетическую энергию часть её собственной энергии. Таким образом, кинетическая и собственная энергии частицы образуют ещё одну сопряжённую пару энергий. И, по логике нашего подхода к понятию температуры, при увеличении средней кинетической энергии хаотического движения атомов, повышается температура системы из этих атомов. Но здесь, опять же, остаётся постоянной сумма кинетической и собственной энергий у каждого атома – при условии, что их энергии в других формах остаются прежними.

Так мы приходим к осознанию того, что при выравнивании температур у двух тел, находящихся в тепловом контакте, нескомпенсированная передача энергии от «горячего» тела к «холодному» не происходит. Каждое из этих тел остаётся при своей сумме энергий, а изменяются лишь соотношения в сопряжённых парах энергий, входящих в эти суммы. Не менее поразительный вывод следует применительно к термодинамически изолированной системе: такая система, без взаимодействия с окружающим миром, не может изменить свою суммарную энергию, но вполне может изменить свою температуру – если, в результате некоторых внутренних процессов, изменятся соотношения в сопряжённых парах энергий. Именно с такими процессами имеют дело термохимики, когда они определяют теплоты химических реакций калориметрическим методом – где измеряемой величиной является вовсе не энергия (не калории!), а приращение температуры.

Эта подмена понятий, которая совершается в термохимии, далеко не безобидна. Сущность того, что называется тепловыми эффектами химических реакций, остаётся загадкой, пока используются такие термины, как «выделение или поглощение тепла при химических реакциях». Эти термины вводят в заблуждение: можно подумать, что реакция, идущая «с поглощением тепла», заимствует это тепло из окружения. В действительности же, происходит всего лишь понижение температуры в зоне реакции. Последующий теплообмен с окружением совсем не обязателен – кстати, его и сводят на нет с помощью теплоизолирующих стенок калориметров.

Таким образом, мы приходим к важному выводу: так называемые тепловые эффекты химических реакций являются, в действительности, эффектами повышения или понижения температуры в зоне реакции. Эти повышения-понижения температуры требуют совсем иного объяснения, чем «выделения-поглощения тепла». Прежде чем дать это объяснение (5.11), рассмотрим вопрос об ионизации вещества движущейся заряженной частицей.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-06; просмотров: 212; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.83.150 (0.017 с.)