Строение Земли. Общая характеристика геосфер. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Строение Земли. Общая характеристика геосфер.



Строение Земли. Общая характеристика геосфер.

Земля входит в состав системы, где центром является Солнце, в котором заключено 99,87% массы всей системы. Характерной особенностью всех планет Солнечной системы является их оболочечное строение: каждая планета состоит из ряда концентрических сфер, различающихся составом и состоянием вещества. Земля и окружающая ее среда сформировались в результате закономерного развития всей Солнечной системы. Около 4,7 млрд лет назад из рассеянного в протосолнечной системе газопылеватого вещества образовалась планета Земля. Как и другие планеты, Земля получает энергию от Солнца, достигающую земной поверхности в виде электромагнитного излучения. Солнечное тепло — одно из главных слагаемых климата Земли,

основа для развития многих геологических процессов.

 

По новейшим данным масса Земли составляет 5,98 • 1021 т, объем - 1,083-1012 км3, площадь поверхности ~ 510 млн. км2. Размеры, а следовательно, и все природные ресурсы нашей планеты ограничены. Форма Земли близка к шару, сплюснутому у полюсов. Такую форму называют сфероидом. Средний радиус 3емли равен 6371 км, при этом экваториальный радиус составляет 6378 км, а полярный—6357 км. В связи с тем, что земная поверхность усложнена глубокими океаническими впадинами и высокими горными хребтами, эту истинную, присущую только Земле форму, назвали геоидом.

На основании изучения характера распространения сейсмических волн, определения массы и плотности Земли, распределения водного и воздушного пространства установлено, что наша планета имеет не- однородное строение и так же, как другие планеты Солнечной системы, со- стоит из концентрических оболочек (геосфер) — внутренних и внешних. К внутренним геосферам относятся: ядро, мантия и литосфера, к внешним - магнитосфера, гидросфера, атмосфера и биосфера. Непосредственному наблюдению доступны внешние геосферы и самая верхняя часть земной коры, С помощью буровых скважин человеку удалось проникнуть на глубину не более 12 км. Строение более глубоких недр изучается геофизическими методами, из которых наибольшее значение имеют сейсмические и гравиметрические.

 

 

Обломочные горные породы и их происхождение.

Обломочные породы представляют собой продукт разрушения других горных пород, в основном на суше в результате физических или химических процессов. Классификация обломочных пород учитывает размеры их зерен - от двух-трех метровых валунов, до долей миллиметра в глинах. Размер зерен обломочных пород позволяет установить их происхождение. Чем крупнее частицы, тем ближе к исходному месту разрушения находятся породы. Мелкозернистые породы могут отложиться за сотни километров от своего источника.

Обломочные горные породы - осадочные горные породы, образовавшиеся из обломков различных минералов и пород. По величине зерен обломочные горные породы различаются на:

- (окатанные) валуны и (неокатанные, угловатые) глыбы - более 100 мм;

- (окатанную) гальку и (неокатанный) щебень - от 10 до 100 мм;

- (окатанный) гравий и (неокатанную) дресву - от 1 до 10 мм;

- песок - от 0.1 до 1 мм;

- пыль (алеврит) - от 0.01 до 0.1 мм.

 

 

Тектонические структуры.

Тектонические структуры - закономерно повторяющиеся формы залегания горных пород. Тектонические структуры образуются в результате внутренних процессов, происходящих в твердых геосферах Земли: тектонических движений, прорывов магмы и т.п.

Различают:

- простейшие тектонические структуры: складки, трещины, сбросы, лакколиты и др.; и

- глубинные тектонические структуры, достигающие верхних слоев мантии Земли: платформы, геосинклинали, островные дуги, глубинные разломы и др.

Тектонические структуры, закономерно повторяющиеся в земной коре формы залегания горных пород. В широком смысле термин «Тектонические структуры» охватывает разнообразные части земной коры, образующиеся благодаря сочетанию ряда различных более мелких структурных форм. Наиболее существенными признаками, по которым классифицируют Тектонические структуры, являются масштаб, морфология и генезис.

 

Различают элементарные структурные формы (слои, складки, трещины, разрывные нарушения — сбросы, сдвиги, надвиги, шарьяжи) и Тектонические структуры магматических тел (дайки, силлы, лакколиты, батолиты и др.), которые, в свою очередь, могут обладать структурными чертами меньших размеров, вплоть до образования Тектонические структуры микроскопических размеров.

 

Закономерные комплексы элементарных структурных форм образуют Тектонические структуры более крупных порядков, например складки группируются в сложные структурные формы — антиклинории, синклинории, которые, в свою очередь, формируют складчатые системы; на платформах выделяются синеклизы, аятеклизы, авлакогены. Наиболее крупные Тектонические структуры земной коры уходят корнями в верхнюю мантию и называются глубинными структурами; к числу важнейших из них относятся континентальные и океанические платформы (плиты), океанические, геосинклинальные и орогенные подвижные пояса (см. Геосинклинальная система, Ороген), в свою очередь слагающие континент, и океанические сегменты литосферы, а также глубинные разломы и рифты. Глубинные структуры, развитие которых протекает главным образом в земной коре, называются коровыми структурами. Образование Тектонические структуры происходит под влиянием движений, имеющих определённую направленность и историю (кинематику) развития (см. Тектонические движения), и сил, вызывающих тектонические деформации и отражающих динамику процесса.

 

Элементарные Тектонические структуры представляют предмет изучения структурной геологии. Микроскопия. Тектонические структуры магматических тел изучаются методами микроструктурного анализа (см. Петротектоника). Комплексы элементарных Тектонические структуры крупного масштаба исследуются геотектоникой (см. Тектоника).

 

 

Складчатые нарушения.

Складчатые нарушения — синоним термина «пликативные дислокации». Дислокация — нарушение первоначального залегания горных пород. Различают пликативные и дизъюнктивные дислокации. Дизъюнктивные дислокации — дислокации сопровождающиеся разрывом сплошности пластов горных пород. Они проявляются в виде трещин, по которым происходит смещение пласта. Различают следующие дислокации: сброс, взброс, надвиг, сдвиг, ступенчатый сброс, грабен и горст. Пликативные дислокации (складчатые нарушения) — это дислокации, которые происходят без разрыва сплошности пластов горных пород.Среди них различают следующие основные виды тектонических нарушений: моноклинали флексуры и складки.

ДИСЛОКАЦИИ ПЛИКАТИВНЫЕ — широко распространенные в земной коре деформации, приводящие к возникновению изгибов г. п. разного масштаба и формы. При Д. п. либо не происходит макронарушений сплошности г. п., либо п. разбиваются на множество небольших блоков, каждый из которых никакой деформации не испытывает, но поворачивается или сдвигается относительно соседнего, и только в целом создается впечатление складки. Складки могут иметь разл. генезис и форму. Выделяются два главных типа: положительные формы — антиклинали и отрицательные формы — синклинали. Син.: деформации пликативные, нарушения складчатые, дислокации складчатые.

 

 

Разрывные нарушения.

Дислокация — нарушение первоначального залегания горных пород. Различают пликативные и дизъюнктивные дислокации. Дизъюнктивные дислокации — дислокации сопровождающиеся разрывом сплошности пластов горных пород. Они проявляются в виде трещин, по которым происходит смещение пласта. Различают следующие дислокации: сброс, взброс, надвиг, сдвиг, ступенчатый сброс, грабен и горст.

Разрывным нарушением называется деформация пластов горных пород с нарушением их сплошности, возникающая в случае превышения предела прочности пород тектоническими напряжениями. Синоним - тектонические разрывы, как и складки, необычайно разнообразны по своей форме, размерам, величине смещения и другим параметрам. Разрывы тектонические, разломы, трещины в земной коре, образовавшиеся при тектонических движениях и деформациях горных пород. Массивы разобщённых при этом горных пород образуют крылья; при наклонном разрыве различают лежачее крыло, подстилающее разрыв, и висячее крыло, покрывающее разрыв. Наблюдаются разрывы без существенного относительного смещения крыльев — тектонические трещины, и со значительным смещением — разрывные смещения; среди последних выделяют: сдвиг, образующийся вследствие горизонтального смещения крыльев по вертикальной или наклонной трещине; раздвиг — результат раздвижения крыльев в стороны; сброс, разрыв, у которого висячее крыло смещено вниз; взброс и надвиг, образованные смещением висячего крыла вверх (различие между взбросом и надвигом — в величине угла наклона Разрывы тектонические); к этому же типу смещений относятся покровы тектонические, возникающие благодаря надвиганию висячего крыла с большой амплитудой, по очень пологой, горизонтальной или волнистой трещине. Широко развиты комбинированные смещения (сбросо-сдвиги и т.п.). Размер Разрывы тектонические и амплитуда смещений по ним различны. Тектонические трещины без смещения в большинстве случаев не выходят за пределы нескольких м. Разрывы со смещением могут варьировать от небольших трещин в несколько дм длиной до глубинных разломов, рассекающих всю земную кору и часть верхней мантии Земли. Амплитуда сбросов достигает нескольких км, сдвигов и тектонических покровов — десятков (а по мнению ряда исследователей, и нескольких сотен) км. Различный характер напряжений вызывает образование разных типов Разрывы тектонические: в зонах сжатия земной коры формируются взбросы, надвиги и покровы, которые обычно сочетаются со складками горных пород; в зонах растяжения земной коры образуются сбросы и раздвиги. Зоны проявления большого числа сбросов называются рифтами.

 

 

Классификация склонов

Склон — наклонный участок поверхности Земли, формирующийся в результате действия рельефообразующих процессов, протекающих на суше и на дне морей и океанов.

 

Характер склонов определяется составом и залеганием слагающих их пород, абсолютными и относительными высотами местности, интенсивностью склоновых процессов, в свою очередь зависящих от климата, особенностями растительности и других компонентов природной среды, экспозицией склонов.

 

Материковый склон — один из основных элементов подводной окраины материков. Расположен между шельфом и материковым подножием. Характеризуется более крутыми уклонами поверхности по сравнению с шельфом и ложем океана (в среднем около 4°, нередко 15-20°, до 40°) и значительной расчленённостью рельефа.

 

Подводный береговой склон — прибрежная полоса морского дна, непосредственно примыкающая к берегу и подвергающаяся деформациям под воздействием волн и течений.

 

Склон долины водотока — повышающаяся часть долины, ограниченная сверху ее бровкой, а снизу подошвой склона.

Состав и строение атмосферы

Атмосфера (от. греч. ατμός — «пар» и σφαῖρα — «сфера») — газовая оболочка небесного тела, удерживаемая около него гравитацией.

Начальный состав атмосферы планеты обычно зависит от химических и температурных свойств солнца в период формирования планет и последующего выхода внешних газов. Затем состав газовой оболочки эволюционирует под действием различных факторов.

 

Атмосфера Венеры и Марса в основном состоят из двуокиси углерода с небольшими добавлениями азота, аргона, кислорода и других газов. Земная атмосфера в большой степени является продуктом живущих в ней организмов. Приблизительный состав атмосферы Земли: 78.08 % азота, 20.95 % кислорода, изменяющееся количество водяного пара (в среднем около 1 %), 0.93 % аргона, 0.038 % двуокиси углерода, и небольшое количество водорода, гелия, других благородных газов и загрязнителей.

 

Низкотемпературные газовые гиганты — Юпитер, Сатурн, Уран и Нептун — могут удерживать в основном газы с низкой молекулярной массой — водород и гелий.

Атмосфера состоит из тропосферы, тропопаузы, стратосферы, стратопаузы, мезосферы, мезопаузы, термосферы, экзосферы.

 

Радиационный баланс Земли

Радиационный баланс земной поверхности - разность между суммарной солнечной радиацией, поглощенной земной поверхностью, и ее эффективным излучением. Для земной поверхности

- приходная часть есть поглощенная прямая и рассеянная солнечная радиация, а также поглощенное встречное излучение атмосферы;

- расходная часть состоит из потери тепла за счет собственного излучения земной поверхности.

Радиационный баланс может быть положительным (днем, летом) и отрицательным (ночью, зимой); измеряется в кВт/кв.м/мин.

Радиационный баланс земной поверхности - важнейший компонент теплового баланса земной поверхности; один из основных климатообразующих факторов.

Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца.

Солнечная радиация — главный источник энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере (см. Инсоляция). Количество солнечной радиации зависит от высоты солнца, времени года, прозрачности атмосферы. Для измерения солнечной радиации служат актинометры и пиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени

 

 

Местный кимат.

Кли́мат (греч. κλίμα (klimatos) — наклон[1]) — многолетний статистический режим погоды, характерный для данной местности в силу её географического положения.

 

Климат — статистический ансамбль состояний, через который проходит система: гидросфера->литосфера->атмосфера за несколько десятилетий

 

Под климатом принято понимать усреднённое значение погоды за длительный промежуток времени (порядка нескольких десятилетий) то есть климат — это средняя погода. Таким образом, погода — это мгновенное состояние некоторых характеристик (температура, влажность, атмосферное давление). Отклонение погоды от климатической нормы не может рассматриваться как изменение климата, например, очень холодная зима не говорит о похолодании климата. Для выявления изменений климата нужен значимый тренд характеристик атмосферы за длительный период времени порядка десятка лет.

Местный климат, мезоклимат, климат сравнительно небольших территорий, достаточно однородных по природным условиям (например, определённого лесного массива, морского побережья, участка речной долины, межгорной котловины, небольшого города или городского района и т.п.). По масштабу распространения занимает промежуточное положение между макроклиматом и микроклиматом. М. к. в значительной степени определяется особенностями земной поверхности в данном районе (её топографией, характером почвы, растительным покровом, городской застройкой и т.п. Эти особенности наиболее резко проявляются в нижнем слое атмосферы мощностью до нескольких сотен м и постепенно сглаживаются с увеличением высоты. М. к. обычно характеризуется выводами из многолетнего ряда наблюдений метеорологических станций данного района.

 

 

Строение Земли. Общая характеристика геосфер.

Земля входит в состав системы, где центром является Солнце, в котором заключено 99,87% массы всей системы. Характерной особенностью всех планет Солнечной системы является их оболочечное строение: каждая планета состоит из ряда концентрических сфер, различающихся составом и состоянием вещества. Земля и окружающая ее среда сформировались в результате закономерного развития всей Солнечной системы. Около 4,7 млрд лет назад из рассеянного в протосолнечной системе газопылеватого вещества образовалась планета Земля. Как и другие планеты, Земля получает энергию от Солнца, достигающую земной поверхности в виде электромагнитного излучения. Солнечное тепло — одно из главных слагаемых климата Земли,

основа для развития многих геологических процессов.

 

По новейшим данным масса Земли составляет 5,98 • 1021 т, объем - 1,083-1012 км3, площадь поверхности ~ 510 млн. км2. Размеры, а следовательно, и все природные ресурсы нашей планеты ограничены. Форма Земли близка к шару, сплюснутому у полюсов. Такую форму называют сфероидом. Средний радиус 3емли равен 6371 км, при этом экваториальный радиус составляет 6378 км, а полярный—6357 км. В связи с тем, что земная поверхность усложнена глубокими океаническими впадинами и высокими горными хребтами, эту истинную, присущую только Земле форму, назвали геоидом.

На основании изучения характера распространения сейсмических волн, определения массы и плотности Земли, распределения водного и воздушного пространства установлено, что наша планета имеет не- однородное строение и так же, как другие планеты Солнечной системы, со- стоит из концентрических оболочек (геосфер) — внутренних и внешних. К внутренним геосферам относятся: ядро, мантия и литосфера, к внешним - магнитосфера, гидросфера, атмосфера и биосфера. Непосредственному наблюдению доступны внешние геосферы и самая верхняя часть земной коры, С помощью буровых скважин человеку удалось проникнуть на глубину не более 12 км. Строение более глубоких недр изучается геофизическими методами, из которых наибольшее значение имеют сейсмические и гравиметрические.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-06; просмотров: 1317; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.184.90 (0.045 с.)