Вращающие моменты асинхронных машин 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вращающие моменты асинхронных машин



ВРАЩАЮЩИЕ МОМЕНТЫ АСИНХРОННЫХ МАШИН

Взаимодействие тока I 2 в обмотке ротора с потоком асинхронной машины Ф создает механическую силу, приводящую ротор во вращение. При определении вращающего момента, создаваемого этой силой, необходимо исходить из известного физического соотношения, согласно которому мощность, затрачиваемая на приведение тела во вращение, определяется произведением приложенного к нему момента на скорость вращения данного тела.

На ротор двигателя через вращающийся магнитный поток Ф передается некоторая электромагнитная мощность. Однако не вся мощность, переносимая на ротор магнитным потоком, расходуется на приведение его во вращение, поскольку часть ее тратится на нагревание проводников обмотки ротора.

Механическая мощность двигателя, равная разности электромагнитной мощности и мощности потерь, будет равна произведению вращающего момента на частоту вращения ротора Р мех = Мп /9,55

Механический момент двигателя зависит от трех групп величин: во-первых, что величины, определяемые конструкцией двигателя, к их числу относятся r1, r'2, x1, x'2; вовторых, величины, характеризующие напряжение, подводимое к двигателю — напряжение на его зажимах U и частота питающего напряжения f; наконец, последняя величина, определяющая момент, развиваемый двигателем, зависит от режима его работы — это скольжение s.

Помимо зависимости вращающего момента асинхронного двигателя от частоты вращения ротора большое значение имеет зависимость его от напряжения, питающего двигатель.

вращающий момент, развиваемый асинхронным двигателем, весьма чувствителен к изменению питающего напряжения. При снижении напряжения, питающего двигатель, который работает под нагрузкой, его вращающий момент снижается. В результате этого происходит понижение частоты вращения двигателя. Частота понижается (и соответственно увеличивается скольжение) до тех пор, пока вращающий момент двигателя не станет равным статическому моменту сопротивления, обусловленному приводом.

Однако если напряжение понижается очень сильно, может случиться, что максимальный вращающий момент, который развивает двигатель при данном напряжении, оказывается меньше, чем статический момент сопротивления на его валу. В этом случае происходит опрокидывание двигателя, т. е. частота вращения ротора постепенно уменьшается и в конце концов двигатель останавливается.

 

 

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ

СИНХРОННЫЕ ДВИГАТЕЛИ

Синхронный двигатель. Принцип действия и устройство. Синхронный двигатель может работать в качестве генератора и двигателя. Синхронный двигатель выполнен так же, как и синхронный генератор. Его обмотка якоря I (рис. 291, а) подключена к источнику трехфазного переменного тока; в обмотку возбуждения 2 подается от постороннего источника постоянный ток. Благодаря взаимодействию вращающегося магнитного поля 4, созданного трехфазной обмоткой якоря, и поля, созданного обмоткой возбуждения, возникает электромагнитный момент М (рис. 291,б), приводящий ротор 3 во вращение. Однако в синхронном двигателе в отличие от асинхронного ротор будет разгоняться до частоты вращения n = n1, с которой вращается магнитное поле (до синхронной частоты вращения).

Электромагнитный момент. Электромагнитный момент в синхронном двигателе возникает в результате взаимодействия магнитного потока ротора (потока возбуждения Фв) с вращающимся магнитным полем, создаваемым трехфазным током, протекающим по обмотке якоря (потоком якоря Фв). При холостом ходе машины оси магнитных полей статора и ротора совпадают (рис. 292,а). Поэтому электромагнитные силы I, возникающие между «полюсами» статора и полюсами ротора, направлены радиально (рис. 292, б) и электромагнитный момент машины равен нулю. При работе машины в двигательном режиме (рис. 292, в и г) ее ротор под действием приложенного к валу внешнего нагрузочного момента Мвнсмещается на некоторый угол 0 против направления вращения.

Пуск в ход и регулирование частоты вращения. Синхронный двигатель не имеет начального пускового момента. Если подключить обмотку якоря к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять свое направление, т. е. средний момент за период будет равен нулю. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. Для этой цели применяют метод асинхронного пуска.

Синхронный двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой пусковой обмоткой 3 (рис. 293). В полюсные наконечники ротора 2 синхронного двигателя закладывают медные или латунные стержни, замкнутые накоротко двумя торцовыми кольцами. Пусковая обмотка выполнена подобно беличьей клетке асинхронной машины, но занимает лишь часть окружности ротора. В некоторых двигателях специальная короткозамкнутая обмотка

ЭЛЕКТРИЧЕСКАЯ ДУГА

При размыкании контактов электрического аппарата вследствие ионизации пространства между ними возникает электрическая дуга. Промежуток между контактами при этом остается проводящим и прохождение тока по цепи не прекращается.

Для ионизации и образования дуги необходимо, чтобы напряжение между контактами было примерно 15—30 В и ток цепи 80—100 мА.

При ионизации пространства между контактами заполняющие его атомы газа (воздуха) распадаются на заряженные частицы — электроны и положительные ионы. Поток электронов, излучаемых с поверхности контакта, находящегося под отрицательным потенциалом (катода), движется по направлению к положительно заряженному контакту (аноду); поток же положительных ионов движется к катоду.

При увеличении температуры движение электронов в металле катода ускоряется, они приобретают большую энергию и начинают покидать катод, вылетая в окружающую среду. Это явление носит название термоэлектронной эмиссии. Таким образом, под действием авто- и термоэлектронной эмиссии в электрическую дугу поступают с катода все новые и новые электроны.

При своем перемещении от катода к аноду электроны, сталкиваясь на своем пути с нейтральными атомами газа, расщепляют их на электроны и положительные ионы (рис. 303, в). Этот процесс называется ударной ионизацией. Появившиеся в результате ударной ионизации новые, так называемые вторичные электроны начинают двигаться к аноду и при своем движении расщепляют все новые атомы газа. Рассмотренный процесс ионизации газа носит лавинообразный характер подобно тому, как один камень, брошенный с горы, захватывает на своем пути все новые и новые камни, порождая лавину. В результате промежуток между двумя контактами заполняется большим количеством электронов и положительных ионов. Эта смесь электронов и положительных ионов называется плазмой. В образовании плазмы значительную роль играет термическая ионизация, которая происходит в результате повышения температуры, вызывающей увеличение скорости движения заряженных частиц газа.

Способы гашения дуги могут быть различные, но все они основываются на следующих принципах: принудительное удлинение дуги; охлаждение межконтактного промежутка посредством воздуха, паров или газов; разделение дуги на ряд отдельных коротких дуг.

Охлаждение межконтактного промежутка вызывает повышенную теплоотдачу столба дуги в окружающее пространство, вследствие чего заряженные частицы, перемещаясь из внутренней части дуги на ее поверхность, ускоряют процесс деионизации.

При удлинении дуги и удалении ее от контактов происходит увеличение падения напряжения в столбе дуги и напряжение, приложенное к контактам, становится недостаточным для поддержания дуги.

КОНТРОЛЛЕРЫ

Контроллер или командоконтроллер - это электрический аппарат, предназначенный для ручного управления электродвигателями (пуск, реверсирование, регулирование частоты вращения, останов), называют контроллером, а электрический аппарат, предназначенный для осуществления различных переключений в цепях управления схем электропривода, а также коммутации силовых цепей с небольшими нагрузками по току, командоконтроллером. Контроллеры применяют чаще для управления двигателями постоянного и переменного тока, в частности в подъемно-транспортных установках. От реостатов они отличаются тем, что переключающее устройство не связано в одно целое с резисторами, а располагается отдельно. По конструкции контроллеры могут быть кулачковыми, плоскими, барабанными и др. Наиболее распространены кулачковые контроллеры, имеющие различную конструкцию. Основными элементами их являются кулачковые шайбы, изготовленные из электроизоляционного материала, и установленные на металлическом валу контактные элементы и корпус. Контроллер ККТ-60А, предназначенный для управления электродвигателями переменного тока до 30 кВт, показан на рис. 35 а, б. Корпус 1 контроллера состоит из двух частей, отлитых из алюминиевого сплава. На валу 3 устанавливаемом в корпусе на шариковых подшипниках, размещены шесть кулачковых шайб 7 и храповое колесо 2. Кулачковые шайбы изготовлены из изоляционного материала в виде дисков с определенным профилем. На корпусе по обе стороны вала закреплены две пластмассовые рейки 8, на которых располагаются неподвижные контакт-детали 10. Подвижные контакт-детали 11 закреплены на держателе 13, который соединен шарнирно-пружинной связью с контактным рычагом 12. Подвижная контакт-деталь связана с неподвижным зажимом 9 гибким соединением. Контактный рычаг 12 установлен на оси 14. Коммутация осуществляется рукояткой 4, закрепленной на валу. Вал имеет пять положений в обе стороны от нулевого, которые фиксируются храповым колесом и фиксаторами. Положение контактов изменяется под действием кулачковых шайб на ролик 15 контактного рычага. При набегании гребня кулачковой шайбы на ролик 15 контактный рычаг поворачивается и контакт-детали размыкаются, при сходе ролика с гребня шайбы рычаг под действием возвратной пружины 16 замыкает контакт. Контактные элементы разделены камерой 5 из изоляционного материала, которая крепится на крышке 6 контроллера.

 

 

УСТРОЙСТВО, ОСНОВНЫЕ ТЕХН. ХАР-КИ ПРЕДОХРАНИТЕЛЯ

Общие сведения. Предохранители – это электрические аппараты, предназначенные для защиты электрических цепей от токовых пе­регрузок и токов к.з. Основными элементами предохранителя являются плавкая вставка, включаемая последовательно с защищаемой цепью, и дугогасительное устройство.

К предохранителям предъявляются следующие требования:

1) Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта.

2) Время срабатывания предохранителя при КЗ должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны рабо­тать с токоограничением.

3) При КЗ в защищаемой цепи предохранители должны обеспечивать селективность защиты.

4) Характеристики предохранителя должны быть ста­бильными, а технологический разброс их параметров не должен нарушать надежность защиты.

5) В связи с возросшей мощностью установок предохра­нители должны иметь высокую отключающую способность.

6) Конструкция предохранителя должна обеспечивать возможность быстрой и удобной замены плавкой вставки при ее перегорании.

Нагрев плавкой вставки при длительной нагрузке. Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зави­симость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на рис. 6.7) во всех точках шла немного ниже характеристики защищае­мой цепи или объекта (кривая 2 на рис. 6.7). Однако ре­альная характеристика предохранителя (кривая 3) пересе­кает кривую 2. Поясним это. Если характеристика предо­хранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок.

Нагрев плавкой вставки при КЗ. Если ток, проходящий через вставку, в 3… 4 раза боль­ше номинального, то практически процесс нагрева идет адиабатически, т. е. все тепло, выделяемое плавкой встав­кой, идет на ее нагрев. Время нагрева вставки до температуры плавления.

Основным параметром предохранителя при КЗ являет­ся предельный ток отключения. Это ток, который он может отключить при возвращающемся напряжении, равном наи­большему рабочему напряжению.

 

 

ВЫСОКОВОЛЬТНЫЕ ВЫКЛЮЧАТЕЛИ

Высоковольтные выключатели служат для включения и отключения высоковольтных цепей по всех режимах работы электроустановок (нормальном, ненормальном, аварийном).
К выключателям предъявляются следующие требования:
надежность в работе и безопасность в обслуживании;
минимальное время отключения;
малые габариты и масса;
удобство и простота монтажа и эксплуатации;
возможность после отключения автоматического повторного включения (АПВ);
сравнительно невысокая стоимость.
Требование надежности является одним из важнейших, так как от надежной работы выключателем зависит надежность работы электроустановки и даже всей системы.
Минимальное время отключения, т.е. быстродействие выключателя весьма желательно по следующим соображениям:
снижается термическое воздействие тока КЗ на элементы электроустановки, по которой он протекает;
снижается опасность распространения аварии на другие электроустановки;
повышается устойчивость параллельной работы трансформаторов и линий электропередачи;
уменьшается опасность поражения током от прикосновения к заземленным частям при однофазном КЗ.
По принципу гашения дуги и роду дугогасящей среды выключатели подразделяются на масляные, воздушные, электромагнитные, элегазовые и вакуумные.
В настоящее время наиболее распространенными являются масляные включатели, в которых гашение дуги происходит в трансформатором масле. В малообъемных выключателях масло служит только для гашения дуги, а в многообъемных оно является еще и изолирующей средой.
В воздушных выключателях гашение дуги осуществляется струей воздуха под высоким давлением. Эти выключатели не получили распространения в железнодорожных электроустановках.
В электромагнитных выключателях гашение дуги осуществляется за счет перемещения ее в пространстве магнитным полем, то есть гашение происходит в воздушной среде.
В элегазовых выключателях гашение дуги происходит в среде шестифтористой серы SF6 (электрическом газе — сокращенно элегазе), которая активно захватывает электроны в столбе дуги.
Вакуумные выключатели осуществляют гашение дуги в вакуумной камере, где газ практически отсутствует. Эти выключатели по своим качествам наиболее близки к идеальным и поэтому в настоящее время получают все более широкое распространение.

 

ВРАЩАЮЩИЕ МОМЕНТЫ АСИНХРОННЫХ МАШИН

Взаимодействие тока I 2 в обмотке ротора с потоком асинхронной машины Ф создает механическую силу, приводящую ротор во вращение. При определении вращающего момента, создаваемого этой силой, необходимо исходить из известного физического соотношения, согласно которому мощность, затрачиваемая на приведение тела во вращение, определяется произведением приложенного к нему момента на скорость вращения данного тела.

На ротор двигателя через вращающийся магнитный поток Ф передается некоторая электромагнитная мощность. Однако не вся мощность, переносимая на ротор магнитным потоком, расходуется на приведение его во вращение, поскольку часть ее тратится на нагревание проводников обмотки ротора.

Механическая мощность двигателя, равная разности электромагнитной мощности и мощности потерь, будет равна произведению вращающего момента на частоту вращения ротора Р мех = Мп /9,55

Механический момент двигателя зависит от трех групп величин: во-первых, что величины, определяемые конструкцией двигателя, к их числу относятся r1, r'2, x1, x'2; вовторых, величины, характеризующие напряжение, подводимое к двигателю — напряжение на его зажимах U и частота питающего напряжения f; наконец, последняя величина, определяющая момент, развиваемый двигателем, зависит от режима его работы — это скольжение s.

Помимо зависимости вращающего момента асинхронного двигателя от частоты вращения ротора большое значение имеет зависимость его от напряжения, питающего двигатель.

вращающий момент, развиваемый асинхронным двигателем, весьма чувствителен к изменению питающего напряжения. При снижении напряжения, питающего двигатель, который работает под нагрузкой, его вращающий момент снижается. В результате этого происходит понижение частоты вращения двигателя. Частота понижается (и соответственно увеличивается скольжение) до тех пор, пока вращающий момент двигателя не станет равным статическому моменту сопротивления, обусловленному приводом.

Однако если напряжение понижается очень сильно, может случиться, что максимальный вращающий момент, который развивает двигатель при данном напряжении, оказывается меньше, чем статический момент сопротивления на его валу. В этом случае происходит опрокидывание двигателя, т. е. частота вращения ротора постепенно уменьшается и в конце концов двигатель останавливается.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 634; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.237.178.126 (0.021 с.)