Средства взаимодействия процессов в стандарте POSIX 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Средства взаимодействия процессов в стандарте POSIX



Десятилетия успешного использования UNIX выявили, тем не менее, ряд недостатков в исходной архитектуре этой системы. Одним из самых заметных пробелов была явная слабость механизма синхронизации процессов, основанного фактически лишь на сигналах и на функции wait. На практике в большинстве реализаций UNIX вводились дополнительные, более удобные средства межпроцессного взаимодействия, однако возникала проблема несовместимости таких средств для разных версий UNIX. Разнобой был пресечен в начале 90-х годов с выработкой стандарта POSIX, объединившего все лучшее, что к тому времени было предложено в разных версиях UNIX.

К средствам, которые, согласно POSIX, должна поддерживать любая современная реализация UNIX, относятся, в частности:

· сигналы;

· безымянные и именованные каналы;

· очереди сообщений;

· семафоры;

· совместно используемые (разделяемые) области памяти.

Сигналы и каналы были рассмотрены выше. Использование семафоров, очередей сообщений и разделяемой памяти дает примерно те же функциональные возможности, что аналогичные средства Windows, хотя и содержит много интересных особенностей, которые придется, к сожалению, оставить за рамками данного курса.

Планирование процессов

Состояния процессов в UNIX

UNIX является многозадачной системой с вытесняющей приоритетной диспетчеризацией.

Диаграмма основных состояний процесса, показанная на рис. 4‑1, в случае UNIX может быть уточнена так, как показано на рис. 4‑2.

Рис. 4‑2

Поставим следующий вопрос: в каком состоянии находится процесс, когда он вызвал системную функцию и ядро системы выполняет эту функцию? При описании работы большинства ОС этот вопрос обходят молчанием. В UNIX дается четкий ответ: процесс продолжает работать, но он переходит в режим ядра и выполняет системный код. Системные подпрограммы, работающие в режиме ядра, могут использовать все ресурсы системы. При этом контекст процесса остается доступен, что позволяет при выполнении системной функции использовать память и другие ресурсы процесса.

Возможно, что в ходе выполнения системной функции процесс будет заблокирован и перейдет в состояние сна. После пробуждения он перейдет в состояние готовности. Затем процесс будет выбран для выполнения и перейдет в режим ядра, чтобы завершить выполнение той системной функции, на которой он был заблокирован. После этого процесс должен вернуться в режим задачи, однако сразу после выхода из режима ядра процесс может быть вытеснен, если имеется активный процесс с более высоким приоритетом.

Еще один путь изменения состояния процесса связан с обработкой аппаратного прерывания. При этом обработка прерываний всегда выполняется в режиме ядра. После завершения обработки процессу следовало бы вернуться в режим задачи и продолжить выполнение прорванной программы. Однако и здесь возможны варианты. Если в результате прерывания пробудился более приоритетный процесс или если при обработке прерывания от таймера планировщик выбрал другой процесс для выполнения, то текущий процесс будет вытеснен в момент возврата из режима ядра в режим задачи.

Из сказанного можно сделать два важных вывода.

· Процесс, работающий в режиме ядра, не может быть вытеснен ни по истечению кванта времени, ни при активизации более приоритетного процесса. Вытеснение процесса возможно только в момент возврата из режима ядра в режим задачи.

· Переход в состояние сна всегда происходит из выполнения в режиме ядра. После пробуждения процесс возвращается в режим ядра через состояние готовности.

В диаграмме на рис. 4‑2 не учтены еще некоторые состояния, в которых может находиться процесс в UNIX. К их числу относятся состояние старта (процесс только что создан, но еще не готов к выполнению), состояние зомби (см. п. 4.6.1) и состояние приостановки, в которое переходит процесс, получивший сигнал SIGSTOP (см. п. 4.6.4).

Приоритеты процессов

В большинстве версий UNIX используются уровни приоритета от 0 до 127. Будем для определенности считать, что 0 соответствует высшему приоритету, хотя в некоторых версиях дело обстоит наоборот.

Весь диапазон приоритетов разделяется на верхнюю часть (приоритеты режима ядра) и нижнюю часть (приоритеты режима задачи). Это деление показано на рис. 4‑3.

Рис. 4‑3

Текущий (динамический) приоритет процесса, работающего в режиме задачи, определяется суммой трех слагаемых: базового значения, относительного приоритета данного процесса и «штрафа» за интенсивное использование процессорного времени.

Базовое значение приоритета – это то значение, которое система по умолчанию присваивает новому процессу при его создании. Во многих версиях UNIX базовое значение равно высшему приоритету задачи + 20.

Относительный приоритет, который почему-то называется в UNIX «nice number»[11], присваивается процессу при его создании. По умолчанию система устанавливает для процесса нулевое значение относительного приоритета. Обычный пользователь может только увеличить это значение (т.е. понизить приоритет процесса), а привилегированный пользователь может и уменьшить вплоть до высшего приоритета задачи (для самых приоритетных процессов). При создании нового процесса он наследует относительный приоритет родителя.

Штраф за использование процессорного времени увеличивается для работающего процесса с каждым прерыванием от таймера. Вследствие этого, высокоприоритетный процесс не сможет монополизировать использование процессора и время от времени должен будет уступать квант времени низкоприоритетным процессам. Однако система «не злопамятна»: через каждую секунду происходит уменьшение накопленных процессами штрафов наполовину. Таким образом, процесс, отлученный от процессора, через некоторое время восстановит свой исходный приоритет.

Для выполнения всегда выбирается активная задача с наивысшим приоритетом, а если таких несколько, то они получают кванты времени в порядке круговой очереди.

Совершенно иной смысл имеют приоритеты ядра. Как нам известно, процессы, работающие в режиме ядра, не могут быть вытеснены, а поэтому приоритеты не имеют для них никакого значения. Приоритеты ядра устанавливаются только для спящих процессов и зависят только от причины сна. В некоторых случаях одно и то же событие приводит к пробуждению сразу нескольких процессов. В этом случае первым начинает работать тот, чей приоритет ядра выше. Распределение приоритетов ядра продумано таким образом, чтобы первыми завершались те системные вызовы, которые в наибольшей степени блокируют использование дефицитных ресурсов.

Диапазон приоритетов ядра разделен на две части в зависимости от того, как реагируют спящие процессы на получение сигнала. В состоянии «высокоприоритетного» сна, обычно связанного с выполнением дисковых операций, процесс игнорирует поступающие сигналы, поскольку их обработка могла бы задержать реакцию на ожидаемое важное событие. Если же процесс «спит с низким приоритетом», ожидая события несрочного и, возможно, нескорого (например, нажатия клавиши пользователем), то он может проснуться при получении сигнала и обработать этот сигнал.

Интерпретатор команд shell

Организация интерфейса с пользователем обычно не пользуется особым вниманием в курсах ОС. Причина этого в том, что вопросы интерфейса достаточно далеки от круга проблем, касающихся других основных подсистем ОС.

Однако при изучении UNIX нельзя обойти стороной такую интересную и развитую часть системы, как интерпретатор команд, чаще называемый просто шелл (shell).

Шелл не является частью ядра UNIX, по своему статусу это обычная прикладная программа, выделяющаяся только своим назначением, которое заключается в выполнении команд пользователя, задаваемых либо в интерактивном (диалоговом) режиме, либо в виде командных файлов, называемых также шелл-скриптами. Существуют различные варианты шелла, которые, совпадая в основном, предлагают несколько разные дополнительные возможности.

Набор возможностей, предоставляемых любым интерпретатором команд UNIX, настолько широк, что может быть предметом изучения в отдельном курсе. Здесь будет дано только минимальное представление о принципах работы шелла. Более подходящей формой изучения шелла являются лабораторные работы.

Шелл можно рассматривать как своеобразный язык программирования, позволяющий создавать новые программы с достаточно сложными функциями, используя в качестве основных операций вызовы других, более простых программ. При этом конструкции языка шелла имеют прямую связь с описанными выше средствами управления процессами UNIX.

Базовой конструкцией языка команд UNIX (языка shell) является простая команда. Она состоит из имени команды и, возможно, параметров, разделенных пробелами. Имя команды – это обычно имя исполняемого файла (либо двоичной программы, либо шелл-скрипта).

Большинство команд UNIX выводят результат своей работы в текстовом виде на стандартный вывод. Как и в MS-DOS, это фактически означает вывод в файл или устройство, чей хэндл равен 1. По умолчанию это означает, что результаты выводятся на управляющий терминал пользователя. Однако стандартный вывод легко может быть перенаправлен в файл или на устройство. Для этого в команде используются символы ‘>’ и ‘>>’.

Многие команды используют также стандартный ввод (хэндл 0), который по умолчанию означает данные, вводимые с клавиатуры терминала. Признаком конца ввода служит комбинация Ctrl+D. Стандартный ввод также может быть перенаправлен для чтения данных из файла или с устройства (с помощью символа ‘<’), или даже непосредственно из текста команды.

Как правило, стандартный вывод команд UNIX имеет как можно более регулярную структуру. Например, команда просмотра каталога ls -l выдает в каждой строке информацию об одном файле, без общего заголовка и без итоговых данных. Очень часто вывод команды выглядит как таблица, столбцы которой разделены знаками табуляции. Это облегчает последующую обработку выведенных данных следующими командами. Из тех же соображений команды не выдают лишних сообщений типа «Команда успешно выполнена», хотя могут выдавать сообщения об ошибках.

Для выполнения команды шелл запускает отдельный процесс. В результате выполнения команды вырабатывается код завершения процесса, который может затем быть проанализирован. Нулевое значение кода обычно означает нормальное завершение, значение, большее нуля – ошибку.

Составная команда состоит из простых команд, соединенных в виде конвейера или списка.

Конвейер означает параллельное выполнение нескольких команд с передачей данных по мере их обработки от одной команды к следующей, как на заводском конвейере. Запись конвейера состоит из нескольких команд, разделенных знаками ‘|’. Для выполнения конвейера шелл запускает одновременно работающие процессы для каждой команды, при этом стандартный вывод каждой команды перенаправляется на стандартный ввод следующей. Фактически для такого перенаправления используется механизм программных каналов, описанный в п. 4.6.3. Перед запуском конвейера шелл создает необходимое количество каналов, а при запуске каждого процесса связывает его стандартные хэндлы 0 и 1 с соответствующими каналами, как показано на рис. 4‑4.

Рис. 4‑4

Список означает последовательное выполнение команд. Он состоит из нескольких команд, разделенных знаками ‘;’, ‘&&’ или ‘||’. Если две команды разделены знаком ‘;’, то следующая команда запускается после завершения предыдущей. Если команды разделены знаком ‘&&’, то следующая будет выполняться только в том случае, если код завершения предыдущей равен 0 (нормальное завершение). Напротив, знак ‘||’ означает, что следующая команда будет выполняться только в том случае, если код завершения предыдущей не равен 0 (завершение с ошибкой).

Если запись команды заканчивается символом ‘&’, то шелл запускает процесс ее выполнения в фоновом режиме, т.е. не дожидается завершения процесса, а переходит к следующей команде. При этом фоновый процесс продолжает работать параллельно с шеллом и запускаемыми им другими командами. Фоновый процесс не имеет доступа к терминалу.

Как при интерактивной работе, так и при выполнении скриптов могут определяться и использоваться переменные, имеющие строковые значения. Ряд переменных определяется системой, например, PATH содержит список каталогов, в которых шелл ищет команды, а HOME – «домашний» каталог текущего пользователя. Для получения значения переменной перед ее именем записывается символ ‘$’. В скриптах можно также использовать значения параметров, с которыми был вызван скрипт, от $1 до $9.

Шелл, как и любой язык программирования, содержит набор операторов управления порядком выполнения команд, таких как if, case, while, until, for, break и некоторые другие. Логические выражения, используемые в операторах управления, строятся на основе кодов завершения команд, при этом специальная команда test позволяет проверить разнообразные условия, такие, как существование и тип указанного файла, равенство или неравенство строковых и числовых выражений и т.п.

Скорость выполнения шелл-скриптов во много раз меньше, чем скорость компилированной программы на C или на другом языке, однако шелл позволяет резко упростить решение многих практических задач, связанных с управлением операционной системой, обработкой текстовых файлов и т.п. Это достигается за счет того, что шелл-скрипты позволяют использовать «крупные блоки»: составлять новые программы путем изощренного комбинирования уже имеющихся программ-утилит, набор которых в любой современной версии UNIX весьма обширен.

Управление памятью



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 317; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.170.64.185 (0.017 с.)