Производная ф-и задана неявно 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Производная ф-и задана неявно



Функция z=f(x,y) наз. Заданной неявно, если она определена равенством, неразрешенным относительно z.F(x,y,z)=0 x+y+z=ez - это равенство задаем некоторую функцию z=f(x,y), которую нельзя выразить в полном виде.x2+y2+z2=0 - не задает никакой функции. Теорема: Если ф-я F(x,y,z) - непрерывна в т. р0(x0,y0,z0) и ее производная по z Fz(x,y,z)¹0, то равенство F(x,y,z)=0 однозначно определяет в неявном виде функцию z=f(x,y), при этом эта функция дифференцируема и ее производная находится по формулам: ¶z/¶x=- F¢x(x,y,z)/F¢z(x,y,z) ¶z/¶y=-F¢z (x,y,z)/F¢y(x,y,z) Док-во: Найдем полный дифференциал функции dF(x,y,z)=¶F/¶x*dx+¶F/¶y*dy+¶F/¶x*dz F(x0,y0,z0)=0èdF=0è¶F/¶x*dx+¶F/¶y*dy+¶F/¶x*dz=0 dz=-(¶F/¶x)/(¶F/¶z)*dx-(¶F/¶y)/(¶F/¶z)*dy (*) С другой стороны: z=f(x,y), dz=¶z/¶x*dx+¶z/¶y*dy (**) Сравнивая (*) и(**) è ¶z/¶x=- F¢x(x,y,z)/F¢z(x,y,z)¶z/¶y=-F¢z (x,y,z)/F¢y(x,y,z)

 

 

20.4.Точки перегиба граф ф- ии.Пример Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз – называется вогнутой.

 

 

Теорема 1. Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, то кривая y = f(x) обращена выпуклостью вверх (выпукла). Доказательство. Пусть х0 Î (a, b). Проведем касательную к кривой в этой точке.Уравнение кривой: y = f(x);Уравнение касательной: Следует доказать, что .По теореме Лагранжа для f(x) – f(x0): , x0 < c < x. По теореме Лагранжа для Пусть х > x0 тогда x0 < c1 < c < x. Т.к. x – x0 > 0 и c – x0 > 0, и кроме того по условию , следовательно, .Пусть x < x0 тогда x < c < c1 < x0 и x – x0 < 0, c – x0 < 0, т.к. по условию то .Аналогично доказывается, что если f¢¢(x) > 0 на интервале (a, b), то кривая y=f(x) вогнута на интервале (a, b).Теорема доказана. Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба. Очевидно, что в точке перегиба касательная пересекает кривую. Теорема 2. Пусть кривая определяется уравнением y = f(x). Если вторая производная f¢¢(a) = 0 или f¢¢(a) не существует и при переходе через точку х = а f¢¢(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба. Доказательство. 1) Пусть f¢¢(x) < 0 при х < a и f¢¢(x) > 0 при x > a. Тогда при x < a кривая выпукла, а при x > a кривая вогнута, т.е. точка х = а – точка перегиба.Пусть f¢¢(x) > 0 при x < b и f¢¢(x) < 0 при x < b. Тогда при x < b кривая обращена выпуклостью вниз, а при x > b – выпуклостью вверх. Тогда x = b – точка перегиба.Теорема доказана.

Парабола и ее свойства.

Множество точек плоскости, координаты которых по отношению к системе декартовых координат удовлетворяет уравнению y=ax2, где х и у - текущие координаты, а- нек. число, наз. параболой.

Если вершина нах. в О(0,0), то ур-е примет вид

y2=2px-симметрично отн. оси ОХ

х2=2pу-симметрично отн. оси ОУ

Точка F(p/2,0) наз. фокусом параболы, а прямая x=-p/2 - ее директриса.

Любой точке М(х,у), принадлежащей параболе, расстояние до фокуса = r=p/2

Св-ва:

1. парабола предст. собой ¥ точек плоскости, равноотстающих от фокуса и от директрисы y=ax2.

12.2.Эллипс и его св-ва:

Кривая второго порядка наз. эллипсом если коэффициенты А и L имеют одинаковые знаки

Аx2+Cy2=d

ур.-е

наз. канонич. ур.-ем эллипса, где При а=в представляет собой ур-е окружности х2+y22

Точки F1(-c,0) и F2(c,0) - наз. фокусами эллипса а.

Отношение e=с/а наз. его эксцентриситетом (0<=e<=1)

Точки A1,A2,B1,B2 -вершины эллипса.

Св-во:
Для любой точки эллипса сумма расстояний этой точки до фокусов есть величина постоянной, =2а.

Гипербола и ее св-ва.

Кривая 2го порядка наз. гиперболой, если в ур-ии Ax2+Cy2=d, коэффициент А и С имеют противоположные знаки, т.е. А*С<0

б) Если d>0, то каноническое ур-е гиперболы примет вид: x2/a2-y2/b2=1, F1(c,o) и F2(-c,0) - фокусы ее, e>0, e=c/a - эксцентриситет.

Св-во:
для любой точки гиперболы абсолютная величина разности ее расстояний до фокусов есть величина постоянная = 2а.

б) если d=0, ур-е примет вид x2/a2-y2/b2=0, получаем 2 перекрестные прямые х/а±у/b=0

в) если d<0, то x2/a2-y2/b2=-1 - ур-е сопряженной гиперболы.

 

15. 1. Скалярное произведение векторов: его свойства скаляр проивед векторов называется произведение их модулей на косинус угла между ними. Оно обозначается . – есть проекция на и – проекция на . Скалярное произведение векторов есть произведение одного из них на проекцию другого на первый. Косинус угла между векторами:

Два вектора на перпендикулярны (ортогональны), т.е. тогда и только тогда, когда .

Свойства скалярного произведения:

1. – переместительное свойство;

2. – скалярный квадрат вектора;

3. – распределительное свойство;

4. – сочетательное свойство относительно числового множителя.

Докажем распределительное свойство:



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 140; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.213.235 (0.01 с.)