Вектор-строка и вектор-столбец 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вектор-строка и вектор-столбец



Матрицы размера и являются элементами пространств и соответственно:

  • матрица размера называется вектор-столбцом и имеет специальное обозначение:

  • матрица размера называется вектор-строкой и имеет специальное обозначение:

Теоре́ма Кро́некера — Капе́лли — критерий совместности системы линейных алгебраических уравнений:

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.

 

Доказательство (условия совместности системы)

[править] Необходимость

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец b является линейной комбинацией столбцов матрицы A. Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

[править] Достаточность

Пусть . Возьмем в матрице A какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы B. Тогда согласно теореме о базисном миноре последний столбец матрицы B будет линейной комбинацией базисных столбцов, то есть столбцов матрицы A. Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы A.

Ко́мпле́ксные[1] чи́сла (устар. Мнимые числа [2]), — расширение множества вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма x + iy, где x и y — вещественные числа, i — мнимая единица[3].

Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других.

Определения

Поле комплексных чисел можно понимать как расширение поля вещественных чисел, в котором многочлен z 2 + 1 имеет корень. Следующие две элементарные модели показывают, что непротиворечивое построение такой системы чисел возможно. Оба приведенных определения приводят к изоморфным расширениям поля вещественных чисел , как и любые другие конструкции поля разложения многочлена z 2 + 1.

Матричная модель

Комплексные числа можно также определить как семейство вещественных матриц вида

с обычным матричным сложением и умножением. Действительной единице будет соответствовать

мнимой единице —

Замечания

Ошибочно определение числа i как единственного числа, удовлетворяющего уравнению x 2 = − 1, так как число (− i) также удовлетворяет этому уравнению.

Следует также заметить, что выражение , ранее часто использовавшееся вместо i, не вполне корректно, так как алгебраический корень определяется над множеством неотрицательных чисел. Вплоть до XIX века включительно запись вроде считалась допустимой, но в настоящее время, во избежание ошибок, принято записывать это выражение как . Пример возможной ошибки при неосторожном использовании устаревшей записи:

в то время как правильный ответ:



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 256; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.210.126.232 (0.019 с.)