Схема замещения 2-х обмоточного и 3-х обмоточного трансформатора и автотрансформатора. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Схема замещения 2-х обмоточного и 3-х обмоточного трансформатора и автотрансформатора.



 

Во многих случаях на подстанции нужны три номинальных напряжения - высшее Uв, среднее Uc и низшее Uн. Для этого можно было бы использовать два двухобмоточных трансформатора (рис.3.5,а). Более экономично, чем два двухобмоточных, применять один трехобмоточный трансформатор (рис.3.5,б), все три обмотки которого имеют магнитную связь (рис.3.6,а). Еще более экономично применение трехобмоточных автотрансформаторов, условное обозначение которых в схемах электрических сетей приведено на рис. 3.5, в.

Рис.3.5. Схемы подстанции с тремя номинальными напряжениями:

а) - два двухобмоточных трансформатора; б) - трехобмоточный трансформатор; в) - автотрансформатор

 

Схема соединения обмоток автотрансформатора показана на рис.3.6,б. Обмотка низшего напряжения магнитно связана с двумя другими. Обмотки последовательная и общая (П и О на рис.3.6,б) непосредственно электрически соединены друг с другом и, кроме того, имеют магнитную связь. По последовательной обмотке течет ток Iв, а по общей - (Iв - Iс). Номинальной мощностью автотрансформатора называют мощность, которую автотрансформатор может принять из сети высшего напряжения или передать в эту сеть при номинальных условиях работы:

Sном = √3 * Uв.ном * Iв.ном

Эта мощность также называется проходной. Она равна предельной мощности, которую автотрансформатор может передать из сети высшего напряжения в сеть среднего напряжения и наоборот при отсутствии нагрузки на обмотке низшего напряжения.

Последовательная обмотка (П) рассчитывается на типовую мощность (рис.3.6,б):

Sтип = √3 * (Uв.ном – Uc.ном)* Iв.ном = √3 * Uв.ном * Iв.ном * (I - Uc.ном / Uв.ном),

где a=1-(Uс.ном/Uв.ном) – коэффициент выгодности, показывающий, во сколько раз Sтип меньше Sном.

В трехобмоточном трансформаторе все три обмотки имеют мощность Sном. В автотрансформаторе общая и последовательная обмотки рассчитаны на типовую мощность Sтип<Sном, а обмотки низшего напряжения - на aннSном<Sном. Таким образом, через понижающий автотрансформатор можно передать мощность, большую той, на которую выполняются его обмотки. Чем меньше коэффициент выгодности a= Sтип/Sном, тем более экономичен автотрансформатор по сравнению с трехобмоточным трансформатором. Чем ближе номинальные напряжения на средней и высшей сторонах автотрансформатора, тем меньше a и тем выгоднее использовать автотрансформатор. При UC = UB a = 0.

Рис.3.6. Трехобмоточный трансформатор и автотрансформатор:

 

а, б – схемы соединения обмоток; в, г – Г-образная и упрощенная схемы замещения.

 

Схема замещения трехобмоточного трансформатора и автотрансформатора с приведена на рис. 3.6, в, г. Как и для двухобмоточного трансформатора, в такой схеме замещения отсутствуют трансформации, т.е. идеальные трансформаторы, но сопротивления обмоток низшего и среднего напряжений приводят к высшему напряжению. Такое приведение соответствует умножению на квадрат коэффициента трансформации.

Потери холостого хода DPХ и DQХ определяются так же, как и для двухобмоточного трансформатора.

Для трехобмоточных трансформаторов и автотрансформаторов задаются три значения потерь короткого замыкания по парам обмоток DРкВН, DРкBC, DРкCH и три напряжения короткого замыкания по парам обмоток UкВН, UкBC, UкCH. Каждое из каталожных значений DPк и uк% относится к одному из трех возможных опытов короткого замыкания. Так, значения DРкВН и UкВН определяются при замыкании накоротко обмотки низшего напряжения при разомкнутой обмотке среднего напряжения и подведении к обмотке высшего напряжения такого напряжения UкВН, чтобы ток в обмотке низшего напряжения трансформатора был равен номинальному.

 

10. Преобразование трехлучевой звезды в треугольник и наоборот.

Преобразование звезды в треугольник и треугольника в звезду. Соединение трех сопротивлений, имеющее вид трехлучевой звезды (рис. 2.25), называют звездой, а соединение трех сопротивлений так, что они образуют собой стороны треугольника (рис. 2.26), — треугольником. В узлах 1, 2, 3 (потенциалы их Φ1, Φ2 и Φ3) треугольник и звезда соединяются с остальной частью схемы (не показанной на рисунках).

Обозначим токи, подтекающие к узлам 1, 2, 3, через I1, I2 и I3.

Часто при подсчете электрических цепей оказывается полезным преобразовать треугольник в звезду или, наоборот, звезду в треугольник. Практически чаще бывает необходимо преобразовывать треугольник в звезду. Если преобразование выполнить таким образом, что при одинаковых значениях потенциалов одноименных точек треугольника и звезды подтекающие к этим точкам токи одинаковы, то вся внешняя схема «не заметит» произведенной замены. Выведем формулы преобразований. С этой целью выразим токи I1, I2 и I33 в звезде и в треугольнике через разности потенциалов точек и соответствующие проводимости.

Для звезды

Преобразование треугольника в звезду можно пояснить, рас-смотрев, например, схему рис. 2.27, а, б. На рис. 2.27, а изображена схема до преобразования, пунктиром обведен преобразуемый треугольник. На рис. 2.27, б представлена та же схема после преобразования. Расчет токов произвести для нее проще (например, методом двух узлов), чем для схемы рис. 2.27, а.

В полезности преобразования звезды в треугольник можно убедиться на примере схем рис. 2.27, в, г. На рис. 2.27, в изображена схема до преобразования, пунктиром обведена преобразуемая в треугольник звезда. На рис. 2.27, г представлена схема после преобразования, которая свелась к последовательному соединению сопротивлений1.

 

11. Общий порядок преобразования схемы замещения при расчете тока короткого замыкания.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 809; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.94.152 (0.007 с.)