Вещества и их свойства. Предмет химии 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вещества и их свойства. Предмет химии



ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ХИМИИ

Вещества и их свойства. Предмет химии

Оглянемся вокруг. Мы сами и все, что нас окружает, состоит из веществ. Веществ очень много. В настоящее время ученые знают около 10 млн. органических и около 100 тыс. неорганических веществ. И все они характеризуются определенными свойствами. Свойствами вещества называются признаки, по которым вещества отличаются друг от друга или сходны между собой.

Каждый отдельный вид материи, обладающий при данных условиях определенными физическими свойствами, например, алюминий, сера, вода, кислород, называют веществом.

Химия изучает состав, строение, свойства и превращение веществ. Глубокое знание химии совершенно необходимо специалистам всех отраслей народного хозяйства. Наряду с физикой и математикой она составляет основу подготовки специалистов высокой квалификации.

С веществами происходят различные изменения, например: испарение воды, плавление стекла, сгорание топлива, ржавление металлов и т. д. Эти изменения с веществами можно отнести к физическим или к химическим явлениям.

Физическими называют такие явления, при которых данные вещества не превращаются в другие, а обычно изменяется только их агрегатное состояние или форма

Химическими называют такие явления, в результате которых из данных веществ образуются другие. Химические явления называются химическими превращениями или химическими реакциями

При химических реакциях исходные вещества превращаются в другие вещества, обладающие другими свойствами. Об этом можно судить по внешним признакам химических реакций: 1) выделение теплоты (иногда света); 2) изменение окраски; 3) появление запаха; 4) образование осадка; 5) выделение газа.

Атомно-молекулярное учение

В XVIII – XIX вв. в результате работ М. В. Ломоносова, Дальтона, Авогадро и других была выдвинута гипотеза об атомно-молекулярном строении вещества. Эта гипотеза основана на идее о реальном существовании атомов и молекул. В 1860 г. Международный конгресс химиков четко определил понятия атома и молекула. Атомно-молекулярное учение приняли все ученые. Химические реакции стали рассматриваться с точки зрения атомно-молекулярного учения. В конце XIX и в начале XX вв. атомно-молекулярное учение превратилось в научную теорию. В это время ученые доказали экспериментально, что атомы и молекулы существуют объективно, независимо от человека.

В настоящее время, возможно, не только вычислить размеры отдельных молекул их массы, но и определить порядок соединения атомов в молекуле. Ученые определяют расстояние между молекулами и даже фотографируют некоторые макромолекулы. Также теперь известно, что не все вещества состоят из молекул.

Основные положения атомно-молекулярного учения можно сформулировать так:

1. Существуют вещества с молекулярным и немолекулярным строением.

2. Молекула - это самая маленькая частица вещества, которая сохраняет его химические свойства.

3. Между молекулами существуют промежутки, размеры которых зависят от агрегатного состояния и температуры. Наибольшие расстояния имеются между молекулами газов. Этим объясняется их легкая сжимаемость. Труднее сжимаются жидкости, где промежутки между молекулами значительно меньше. В твердых веществах промежутки между молекулами еще меньше, поэтому они почти не сжимаются.

4. Молекулы находятся в непрерывном движении. Скорость движения молекул зависит от температуры. С повышением температуры скорость движения молекул возрастает.

5. Между молекулами существуют силы взаимного притяжения и отталкивания. В наибольшей степени эти силы выражены в твердых телах, в наименьшей – в газах.

6. Молекулы состоят из атомов, которые, как и молекулы, находятся в непрерывном движении.

7 Атомы – это мельчайшие химически неделимые частицы.

8. Атомы одного вида отличаются от атомов другого вида массой и свойствами. Каждый отдельный вид атомов называется химическим элементом.

9. При физических явлениях молекулы сохраняются, при химических, как правило, разрушаются. При химических реакциях происходит перегруппировка атомов.

Атомно-молекулярная теория - одна из главных теорий естественных наук. Эта теория подтверждает материальное единство мира.

По современным представлениям из молекул состоят вещества в газообразном и парообразном состоянии. В твердом (кристаллическом) состоянии из молекул состоят лишь вещества, имеющие молекулярную структуру, например органические вещества, неметаллы (за небольшим исключением), оксид углерода (IV), вода. Большинство же твердых (кристаллических) неорганических веществ не имеет молекулярной структуры. Они состоят не из молекул, а из других частиц (ионов, атомов) и существуют в виде макротел. Например, многие соли, оксиды и сульфиды металлов, алмаз, кремний, металлы.

У веществ с молекулярной структурой химическая связь между молекулами менее прочна, чем между атомами. Поэтому они имеют сравнительно низкие температуры плавления и кипения. У веществ с немолекулярной структурой химическая связь между частицами весьма прочна. Поэтому они имеют высокие температуры плавления и кипения. Современная химия изучает свойства микрочастиц (атомов, молекул, ионов и др.) и макротел.

Молекулы и кристаллы состоят из атомов. Каждый отдельный вид атомов называется химическим элементом.

Всего в природе (на Земле) установлено существование (92) различных химических элементов. Еще 22 элемента получены искусственным путем с использованием ядерных реакторов и мощных ускорителей.

Все вещества делятся на простые и сложные.

Вещества, которые состоят из атомов одного элемента, называются простыми.

Сера S, водород Н2, кислород О2, озон О3, фосфор Р, железо Fe - это простые вещества.

Вещества, которые состоят из атомов разных элементов, называются сложными.

Например, вода Н2О состоит из атомов разных элементов – водорода H и кислорода O; мел CaCO3 состоит из атомов элементов кальция Ca, углерода C и кислородаO. Вода и мел - сложные вещества.

Понятие «простое вещество» нельзя отождествлять с понятием «химический элемент». Простое вещество характеризуется определенной плотностью, растворимостью, температурами кипения и плавления и др. Химический элемент характеризуется определенным положительным зарядом ядра (порядковым номером), степенью окисления, изотопным составом и др. Свойства элемента относятся к его отдельным атомам. Сложные вещества состоят не из простых веществ, а из элементов. Например, вода состоит не из простых веществ водорода и кислорода, а из элементов водорода и кислорода.

Названия элементов совпадают с названиями соответствующих им простых веществ, за исключением углерода.

Многие химические элементы образуют несколько простых веществ, различных по строению и свойствам. Это явление называется аллотропией, а образовавшиеся вещества аллотропными видоизменениями или модификациями. Так, элемент кислород образует две аллотропные модификации: кислород и озон; элемент углерод — три: алмаз, графит и карбин; несколько модификаций образует элемент фосфор.

Явление аллотропии вызывается двумя причинами: 1) различным числом атомов в молекуле, например кислород О2 и озон О3; 2) образованием различных кристаллических форм, например алмаз, графит и карбин.

2. Стехиометрические законы

Стехиометрия — раздел химии, в котором рассматриваются массовые и объемные отношения между реагирующими веществами. В переводе с греческого слово «стехиометрия» имеет смысл «составная часть» и «измеряю».

Основу стехиометрии составляют стехиометрические законы: сохранения массы веществ, постоянства состава, закон Авогадро, закон объемных отношений газов, закон эквивалентов. Они подтвердили атомно-молекулярное учение. В свою очередь, атомно-молекулярное учение объясняет стехиометрические законы.

Тепловой эффект химических реакций, протекающих при постоянном давлении или при постоянном объёме, не зависит от числа промежуточных стадий, а определяется лишь начальным и конечным состоянием системы.

Например, вещество АВ можно получить из А разными способами:

1) А + В = АВ (ΔН)

2) А + С = АС (ΔН1)

АС + В = АВ + С (ΔН2)

ΔН1 + ΔН2 = ΔН

В термохимии пользуются понятием «теплота (энтальпия) образования вещества». Под теплотой образования понимают тепловой эффект реакции образования одного моль вещества из простых веществ.

Существует также понятие «стандартная теплота образования вещества» - тепловой эффект реакции образования одного моль вещества из простых веществ в стандартных условиях ( ΔН0298) (при 298 К и 1 атм)

Обычно теплоты образования простых веществ в стандартных условиях принимают равными нулю. Теплоты образования приводятся в справочниках.

Существует 2 следствия из закона Гесса.

- Первое:

Тепловой эффект реакции образования 1 моль соединения, при заданных температуре и давлении, не зависит от способов получения этого соединения. При этом величина и знак теплоты образования характеризуют устойчивость соединения в данных условиях.

Например:

NH3 PH3 AsH3 SbH3 BiH3
- 46,15 кДж/моль +12,56 +66,38 +145 -

Чем меньше ΔН, тем более устойчиво соединение. При образовании NH3 выделяется тепло. Далее в приведённом ряду теплоты образования возрастают, и, следовательно, устойчивость соединений падает. А гидрид висмута разлагается при получении.

 

Закон Гесса позволяет рассчитывать тепловые эффекты химических реакций или теплоту образования какого – либо вещества, если известны остальные параметры реакции (ΔН и теплоты образования).

- Второе:

Стандартный тепловой эффект реакции равен сумме стандартных теплот образования продуктов реакции за вычетом суммы стандартных теплот образования исходных веществ.

ΔН0298(реакции) = ∑ΔН0298(прод. реакции) - ∑ΔН0298 (исходных веществ)

Например:

NH4Cl = NH3 + HCl↑

Из справочника выпишем энтальпии веществ:

Вещество NH3 HCl NH4Cl
ΔН0298, кДж/моль - 46,15 - 92,3 -315

По этим данным можно рассчитать тепловой эффект хим реакции, пользуясь 2 следствием из закона Гесса.

ΔН0298(реакции) = ΔН0298(HCl) + ΔН0298(NH3) - ΔН0298(NH4Cl) = 176,55 кДж/моль

Тепловой эффект положителен, т.е. реакция эндотермическая, а, значит, чтобы разложить NH4Cl,его нужно нагреть.

Если известен тепловой эффект реакции, то можно рассчитать и теплоту образования вещества, участвующего в реакции. Закон Гесса позволяет также рассчитывать теплоты образования неустойчивых соединений и тепловые эффекты реакций, которые нельзя осуществить экспериментально. На практике тепловой эффект реакций измеряют с помощью калориметра.

Величина ΔН зависит от агрегатного состояния вещества, поэтому в термохимических уравнениях указывают агрегатное состояние веществ. Закон Гесса является следствием первого начала термодинамики и справедлив при постоянном объёме или постоянном давлении.

Второе начало термодинамики

Второе начало термодинамикиявляется законом, в соответствии с которым макроскопические процессы, протекающие с конечной скоростью, необратимы.

В отличие от идеальных (без потерь) механических или электродинамических обратимых процессов, реальные процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), сопровождаются разнообразными потерями: на трение, диффузию газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д.

Поэтому эти процессы необратимы, то есть могут самопроизвольно протекать только в одном направлении.

Второе начало термодинамики возникло исторически при анализе работы тепловых машин.

Само название «Второе начало термодинамики» и первая его формулировка (1850 г.) принадлежат Р. Клаузиусу: «… невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым».

Причем такой процесс невозможен в принципе: ни путем прямого перехода теплоты от более холодных тел к более теплым, ни с помощью каких–либо устройств без использования каких-либо других процессов.

В 1851 году английский физик У. Томсон дал другую формулировку второго начала термодинамики: «В природе невозможны процессы, единственным следствием которых был бы подъем груза, произведенный за счет охлаждения теплового резервуара».

Как видно, обе приведённые формулировки второго начала термодинамики практически одинаковы.

Отсюда следует невозможность реализации двигателя 2-го рода, т.е. двигателя без потерь энергии на трение и другие сопутствующие потери.

Кроме того, отсюда также следует, что все реальные процессы, происходящие в материальном мире в открытых системах, необратимы.

В современной термодинамике второе начало термодинамики изолированных систем формулируется единым и самым общим образом как закон возрастания особой функции состояния системы, которую Клаузиус назвал энтропией (S).

Физический смысл энтропии состоит в том, что в случае, когда материальная система находится в полном термодинамическом равновесии, элементарные частицы, из которых состоит эта система, находятся в неуправляемом состоянии и совершают различные случайные хаотические движения.

В принципе можно определить общее число этих всевозможных состояний.

Параметр, который характеризует общее число этих состояний, и есть энтропия.

Рассмотрим это на простом примере.

Пусть изолированная система состоит из двух тел «1» и «2», обладающих неодинаковой температурой T 1 > T 2. Тело «1» отдает некоторое количество тепла Q, а тело «2» его получает. При этом идет тепловой поток от тела «1» к телу «2». По мере уравнивания температур увеличивается суммарное количество элементарных частиц тел «1» и «2», находящихся в тепловом равновесии.

По мере увеличения этого количества частиц увеличивается и энтропия. И как только наступит полное тепловое равновесие тел «1» и «2», энтропия достигнет своего максимального значения. Таким образом, в замкнутой системе энтропия S при любом реальном процессе либо возрастает, либо остаётся неизменной, т. е. изменение энтропии Δ S =0. Знак равенства в этой формуле имеет место только для обратимых процессов. В состоянии равновесия, когда энтропия замкнутой системы достигает максимума, никакие макроскопические процессы в такой системе, согласно второму началу термодинамики, невозможны.

Отсюда следует, что энтропия - физическая величина, количественно характеризующая особенности молекулярного строения системы, от которых зависят энергетические преобразования в ней.

Связь энтропии с молекулярным строением системы первым объяснил Л. Больцман в 1887 году. Он установил статистический смысл энтропии (формула 1.6). Согласно Больцману (высокая упорядоченность имеет относительно низкую вероятность)

  S = k ln P, (1.6)

 

где k — постоянная Больцмана, P – статистический вес.

k = 1.37·10-23 Дж/К.

Статистический вес Р пропорционален числу возможных микроскопических состояний элементов макроскопической системы (например, различных распределений значений координат и импульсов молекул газа, отвечающих определённому значению энергии, давления и других термодинамических параметров газа), т. е. характеризует возможное несоответствие микроскопического описания макросостояния.

Для изолированной системы термодинамическая вероятность W данного макросостояния пропорциональна его статистическому весу и определяется энтропией системы:

  W = exp (S / k). (1.7)

Таким образом, закон возрастания энтропии имеет статистически-вероятностный характер и выражает постоянную тенденцию системы к переходу в более вероятное состояние. Отсюда следует, что наиболее вероятным состоянием, достижимым для системы, является такое, в котором события, происходящие в системе одновременно, статистически взаимно компенсируются.

Максимально вероятным состоянием макросистемы является состояние равновесия, которого она может в принципе достичь за достаточно большой промежуток времени. Как было указано выше, энтропия является величиной аддитивной, то есть она пропорциональна числу частиц в системе. Поэтому для систем с большим числом частиц даже самое ничтожное относительное изменение энтропии, приходящейся на одну частицу, существенно меняет её абсолютную величину; изменение же энтропии, стоящей в показателе экспоненты в уравнении (1.7), приводит к изменению вероятности данного макросостояния W в огромное число раз.

Именно этот факт является причиной того, что для системы с большим числом частиц следствия второго начала термодинамики практически имеют не вероятностный, а достоверный характер. Крайне маловероятные процессы, сопровождающиеся сколько-нибудь заметным уменьшением энтропии, требуют столь огромных времён ожидания, что их реализация является практически невозможной. В то же время малые части системы, содержащие небольшое число частиц, испытывают непрерывные флуктуации, сопровождающиеся лишь небольшим абсолютным изменением энтропии. Средние значения частоты и размеров этих флуктуаций являются таким же достоверным следствием статистической термодинамики, как и само второе начало термодинамики.

Буквальное применение второго начала термодинамики ко Вселенной как целому, приведшее Клаузиуса к неправильному выводу о неизбежности «тепловой смерти Вселенной», является неправомерным, так как в природе в принципе не может существовать абсолютно изолированных систем. Процессы, протекающие в открытых системах, подчиняются другим законам и имеют другие свойства.

По величине ΔS судят о направленности процесса: если ΔS>0, то процесс термодинамически возможен, если ΔS < 0, то его самопроизвольное протекание исключается. Таким образом, любую систему можно охарактеризовать 2 функциями – энтропийным и энтальпийным факторами. Энтальпия характеризует стремление системы к агрегации, упорядочению и сопровождается уменьшением внутренней энергии, энтропия отражает тенденцию к разупорядочению. Чтобы оценить, пойдёт ли данный процесс самопроизвольно, нужно учитывать оба фактора. В связи с этим, введена ещё одна функция – ΔG – изобарно-изотермический потенциал: ΔG = ΔH – T · ΔS. Если ΔG <0, процесс протекает самопроизвольно, если ΔG > 0, то процесс невозможен.

ΔG <0, если ΔH<0, т.е. реакция экзотермическая, или ΔН > 0, но по абсолютной величине меньше T · ΔS (энтропийного фактора). Значение T · ΔS резко возрастает при высокой температуре и определяет направленность процесса. Этим объясняется изменение направленности некоторых реакций с повышением температуры.

 

Третье начало термодинамики

Третье начало термодинамики - закон термодинамики, сформулированный В. Нернстом в 1906 году (тепловой закон Нернста), согласно которому энтропия S любой системы стремится к конечному для неё пределу, не зависящему от давления, плотности или фазы, при стремлении температуры (Т) к абсолютному нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать на основе первого и второго начал термодинамики. В классической термодинамике (первого и второго начал) энтропия может быть определена лишь с точностью до произвольной аддитивной постоянной S 0, что практически не мешает большинству термодинамических исследований, так как реально измеряется разность энтропий (S 0) в различных состояниях. Согласно третьему началу термодинамики при Т = 0 значение Δ S = 0.

Макс Планк в 1911 году дал другую формулировку третьего начала термодинамики - как условие обращения в нуль энтропии всех тел при стремлении температуры к абсолютному нулю:

  (1.8)

Отсюда S 0 = 0. Это даёт возможность определять абсолютное значения энтропии и других термодинамических потенциалов.

Формулировка Планка соответствует определению энтропии в статистической физике через термодинамическую вероятность (W) состояния системы S = k ln W.

При абсолютном нуле температуры система находится в основном квантово-механическом состоянии, для которого W = 1 (состояние реализуется единственным микрораспределением). Следовательно, энтропия S при Т = 0 равна нулю. В действительности при всех измерениях стремление энтропии к нулю начинает проявляться значительно раньше, чем может стать существенной при T → 0 дискретность квантовых уровней макроскопической системы, приводящая к явлениям квантового вырождения.

Из третьего начала термодинамики следует, что абсолютного нуля температуры нельзя достичь ни в каком конечном процессе, связанном с изменением энтропии, к нему можно лишь асимптотически приближаться.

 

Катализ

Скорость химических реакций может возрастать не только при увеличении концентрации реагирующих веществ или температуры системы, но и под влиянием катализаторов. Вещества, которые увеличивают скорость химической реакции, оставаясь в конечном итоге неизменными по химическому составу и количеству, называют катализаторами. Процесс увеличения скорости реакции с помощью катализатора называется катализом, а реакции, в которых скорость изменяется в результате введения в реакционную смесь катализаторов, называются каталитическими.

В зависимости от того, находится ли катализатор в той же фазе, что и реагирующие вещества, или образует самостоятельную фазу, различают гомогенный и гетерогенный катализ. Гомогенными катализаторами обычно могут быть растворы кислот, оснований, солей (прежде всего d-элементов— Сr, Mn, Fe, Со, Ni и др.). Примером гомогенного катализа может служить каталитическое разложение пероксида водорода в водном растворе на воду и кислород в присутствии ионов Cr2O72-, WO42-, МоО42-.

При гетерогенном катализе реагирующие вещества и катализатор находятся в разных фазах и разделены между собой поверхностью раздела (в качестве примера можно привести окисление SO2, до SO3 в присутствии катализатора, находящегося в твердой фазе). Катализаторы отличаются избирательностью, что зависит не только от природы катализатора, но условий его применения.

Механизм действия катализатора различен. Наиболее часто встречается катализ, при котором катализатор ускоряет скорость взаимодействия за счет образования промежуточных соединений. При взаимодействии этих продуктов высвобождается катализатор, количество которого остается неизменным.

Процесс образования промежуточных соединений с участием катализаторов является примером гомогенного катализа. В общем виде процесс выглядит следующим образом: А+В К АВ.

Из-за высокой энергии активации скорость реакции вещества А с В без катализатора ничтожно мала. Допустим, что катализатор легче реагирует с веществом А, чем исходные А и В между собой: A + K = AK

Возможность такого взаимодействия можно объяснить более низкой энергией активации при образовании АК. Промежуточный продукт АК, в свою очередь, легко реагирует с веществом В из-за иной природы веществ и малой энергии активации: AK + B = AB + K.

Таким образом, роль катализатора сводится к снижению энергии активации.

Биохимические реакции в растениях и животном организме ускоряются биологическими катализаторами, называемыми ферментами. Они представляют собой либо высокомолекулярные белки, либо сочетание белков с соединениями небелковой природы. Каждый фермент характеризуется высокой избирательностью по отношению к каждому конкретному процессу. Если учесть, что в организме человека протекает более 10 000 различных биохимических процессов, то понятно, насколько велика роль ферментов. Например, окисление сахара в организме протекает примерно в 106 раз быстрее, чем при той же температуре в водном растворе под влиянием кислорода. В сложной цепи биохимических процессов окисления сахара в организме участвует несколько ферментов, каждый из которых катализирует отдельную стадию.


Лекция 4.

ХИМИЧЕСКОЕ И ФАЗОВОЕ РАВНОВЕСИЕ

 

Обратимые и необратимые реакции. Некоторые химические реакции прекращаются до того, как исходные вещества прореагируют полностью. Например, взаимодействие эквимолярных количеств водорода с йодом протекает при 350 °С до тех пор, пока не образуется 80 % HI от теоретически расчетного: H2+ I2 ↔ 2HI.

Если HI нагревать при 350 °С, то происходит разложение на исходные Н2 и I2, однако процесс протекает таким образом, что образуется 10% Н2 и 10% I2, остальные же 80% HI не разлагаются: 2HI↔H2 + I2

Следовательно, при 350 °С осуществляются два процесса: прямая реакция, при которой из H2 и I2 образуется HI, и обратная реакция, в результате которой образовавшийся HI частично разлагается на исходные H2 и I2 Прямая и обратная реакции характеризуют состояние химического равновесия, т. е. системы, в которой не изменяется состав реагирующих веществ, если условия реакции остаются постоянными.

Термодинамически химическое равновесие определяется как соотношение концентраций исходных веществ и продуктов реакции, при котором энтропия системы имеет максимальное, а изобарно-изотермический потенциал – минимальное значение.

Реакции, протекающие одновременно в двух противоположных направлениях, называются обратимыми. В обратимой реакции при одинаковых условиях достигается состояние равновесия независимо от того, из каких веществ исходят. При записи подобных реакций вместо знака равенства пользуются противоположно направленными стрелками (↔).

Рассмотрим взаимодействие магния с хлороводородом: Mg+2HCl=MgCl2 + H2 ↑.

Эта реакция сопровождается образованием хлорида магния и водорода. Если попытаться осуществить обратную реакцию, т. е. пропускать водород через раствор MgCl2, то металлический магний и НС1 не получатся. Следовательно, данная реакция протекает только в одном направлении и поэтому называется необратимой.

Изменение энергии Гиббса в химической реакции, протекающей в растворе, будет зависеть не только от температуры и давления, но и от количества каждого из веществ, входящих в состав раствора. Поэтому очень часто пользуются значением μi, представляющим собой частную производную энергии Гиббса по массе i-го вещества, при условии постоянства температуры и давления системы, а также масс остальных компонентов. Величина μi называется химическим потенциалом.

Когда две системы с различными химическими потенциалами вступают во взаимодействие, то происходит выравнивание потенциалов за счет изменения массы (концентрации) веществ. Давление уравновешивается за счет изменения объема. Поэтому химический потенциал является движущей силой химических реакций. Если эти процессы происходят в гомогенной системе, то они приводят к установлению химического равновесия; в гетерогенной же среде имеет место фазовое равновесие.

Константа химического равновесия. Самопроизвольное протекание обратимых химических реакций происходит до известного предела, т.е. до установления химического равновесия. Концентрации исходных веществ и продуктов реакции при этом остаются неизменными и называются равновесными. В условиях химического равновесия скорость прямой реакции равна скорости обратной.

Например, для реакции mA + nB → pC + qD скорость прямой реакции v1= k1 CАm CBn, скорость обратной реакции v2=k2 CCp CDq. Как только обе скорости становятся одинаковыми, в системе устанавливается динамическое равновесие, и дальнейшее изменение концентраций всех участвующих в реакции веществ прекращается. Итак, в состоянии химического равновесия скорости прямой и обратной реакций равны:

v1=v2, k1 CАm CBn =k2 CCp CDq. → Kp= CCp CDq/ CАm CBn

Это уравнение есть математическое выражение закона действующих масс, которому подчиняется система в состоянии равновесия: частное от деления произведения равновесных концентраций исходных веществ и продуктов реакции является величиной постоянной и называется константой равновесия Кр

Константа равновесия — важнейшая характеристика химического взаимодействия, так как позволяет судить о полноте протекания реакции. Для необратимых процессов Кр →∞. Если же Кр=0, то это указывает на полное отсутствие химического процесса. Достижению химического равновесия иногда препятствуют некоторые факторы, причиной которых является специфика самого процесса. Проиллюстрируем это на примере реакции горения водорода: 2Н2 + О2 = 2Н2О

При нормальных условиях газовая смесь водорода с кислородом может существовать бесконечно долго, так как в этих условиях они практически не реагируют между собой. Такое состояние не является равновесным, поскольку для протекания реакции между Н2 и О2 требуется внешнее воздействие. Если эту смесь поджечь, то произойдет мгновенное взаимодействие с образованием пара воды. Охлаждение этой системы до прежней температуры не возвращает ее в исходное состояние, так как новое состояние (образование воды) является термодинамически более устойчивым. Если состояние системы постоянно во времени, но при изменении внешних условий в системе происходит необратимый процесс, то такое состояние называется заторможенным (ложным) равновесием. Заторможенные равновесия характерны для твердофазных систем.

Истинное химическое равновесие при отсутствии внешнего воздействия неизменно во времени, а после внешнего воздействия система может вернуться в прежнее состояние. При истинном химическом равновесии ΔG = 0, т. е. значение свободной энергии минимально. При заторможенном равновесии ΔG < 0.

Константа равновесия и энергия Гиббса. Константа химического равновесия зависит от природы реагентов, от температуры и связана с изменением стандартной энергии Гиббса ΔG° химической реакции уравнением ΔG°= -RT lnK*

Уравнение * позволяет по значению ΔG° определить К, а следовательно, и равновесные концентрации. Отсюда следует, что чем значительнее убыль энергии Гиббса, т. е. чем сильнее сдвинуто равновесие в сторону продуктов реакции, тем больше значение константы равновесия. При высоких отрицательных значениях ΔG° в равновесной смеси преобладают продукты взаимодействия. Если же ΔG° > 0, то в равновесной смеси преобладают исходные вещества.

Объединяя уравнения ΔG = ΔH – T · ΔS и ΔG°= -RT lnK через величину ΔG, получим -RT lnK = ΔG° = ΔH0 – T · ΔS0

Это уравнение позволяет по значениям ΔH0 и ΔS0 вычислить константу равновесия и степень равновесного превращения.

Очевидно, что константа равновесия в значительной мере зависит от температуры. Для эндотермических процессов повышение температуры соответствует увеличению константы равновесия, для экзотермических — ее уменьшению. От давления (если р не очень велико) константа равновесия не зависит.

Смещение химического равновесия. Принцип Ле Шателье. Состояние химического равновесия при изменении условий (температуры, давления или концентрации) может сместиться либо в сторону образования продуктов реакции, либо в сторону исходных веществ. Влияние, оказываемое на равновесную систему каким-либо внешним воздействием, можно предсказать, пользуясь принципом Ле Шателье (принципом подвижного равновесия): если на систему, находящуюся в равновесии, воздействовать извне, то в системе усилится то из направлений процесса, которое противодействует данному воздействию. Например, реакция окисления SO2 до SO3:

2SO2 (г)+О2 (r) = 2SO3 (г), ΔH = —396,1 кДж/моль

Реакция образования SO3 сопровождается выделением теплоты, т. е. является экзотермическим процессом. Обратный процесс, т. е. разложение SO3 до исходных веществ, является эндотермическим. Если при установившемся равновесии повышать температуру, то это воздействие сместит равновесие в ту сторону, которая идет с поглощением теплоты. Таковым является разложение SO3.

Так как при равновесии соблюдается условие ΔН = TΔS, то изменение температуры приводит к изменению и ΔН. При повышении температуры в системе усиливается действие энтропийного фактора (TΔS > 0), т. е. усиливается эндотермический процесс. При понижении температуры действие энтропийного фактора ослабевает и начинает преобладать экзотермический процесс.

Влияние давления определяется изменением объема, которое происходит в ходе реакции. В данном примере по мере образования SO3 давление системы будет понижаться, поскольку из каждых двух молекул SO2 и одной молекулы О2, образуются только две молекулы SO3. Следовательно, при изменении давления равновесие будет смещаться в ту сторону, которая противодействует данному изменению; при увеличении давления равновесие смещается в сторону образования меньшего числа молекул газа, а уменьшение давления смещает равновесие в сторону образования большего числа молекул. Из этого следует, что в рассматриваемой равновесной системе увеличение давления сместит реакцию в сторону образования SO3.

При изменении концентрации компонентов равновесной системы значение константы равновесия остается неизменным, однако само равновесие смещается, так как при этом создаются более благоприятные условия для протекания прямой пли обратной реакции. Увеличение концентрации SO2 или О2 (или одновременно и того и другого) сместит реакцию в сторону образования SO3, как процесса, приводящего к уменьшению концентрации SO2 и О2. Если по мере образования из реакционной среды удалять SO3, то равновесие тоже сдвинется вправо.

Таким образом, если в реакционную смесь ввести избыток одного из исходных веществ, то равновесие смещается в сторону образования продуктов реакции. Аналогичный результат может быть достигнут путем удаления из системы продуктов реакции.

Знание принципов химического равновесия, основанных на правиле Ле Шателье, имеет очень большое практическое значение, поскольку дает возможность контроля химических реакций как в лаборатории, так и в промышленности. Необходимо отметить, что данный принцип применим только к системам, находящимся в состоянии истинного химического равновесия.


Лекция 5

СТРОЕНИЕ АТОМА. ПРИРОДА ХИМИЧЕСКОЙ СВЯЗИ И СТРОЕНИЕ МОЛЕКУЛ

1 Периодический закон и периодическая система элементов Д. И. Менделеева

Д. И. Менделеев в 1869 г. положил в основу классификации химических элементов величину атомной массы элемента. Он расположил все известные тогда элементы в порядке возрастания их атомных масс и при этом обнаружил связь свойств химических элементов с их атомными массами. Д. И. Менделеев сформ



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 258; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.132.223 (0.087 с.)