Методы снижения горючести полимеров 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методы снижения горючести полимеров



Почти все полимеры легко могут быть подвержены горению с выделением большого количества дыма, образованием токсичных продуктов. Не горят только сильно галогенированные полимеры, такие как поливинилхлорид, перхлорвиниловая смола, многие фторопласты. Поэтому для большинства полимеров стоит задача снижения их горючести.

Введение специальных добавок в полимеры может способствовать снижению его горючести вследствие изменения характера процессов, происходящих при деструкции полимера, или блокирования процесса горения негорючими или ингибирующими веществами.

Вещества, способные ингибировать процессы горения, называют антипиренами. Различают антипирены, действующие в газообразной фазе (например, галогениды сурьмы) и твердые антипирены (такие как фосфат аммония), а также антипирены, действующие и в газообразной, и в твердой фазах. Антипирены могут выступать в роли наполнителей, агентов снижения интенсивности образования пламени, модификаторов продуктов пиролиза, ингибиторов свободных радикалов, а также могут одновременно выполнять две или несколько функций.

Основные классы антипиренов

Существует много различных видов антипиренов, при выборе которых исходят из требований, предъявляемых к материалу конкретного назначения. При этом должны быть учтены не только требования к эксплуатационным характеристикам, но и технологическим параметрам его получения и переработки в изделия.

Существуют несколько механизмов замедления процессов горения с помощью антипиренов:

1. Ингибирование свободнорадикальных процессов, происходящих при разложении полимера, вследствие образования веществ, способных взаимодействовать со свободными радикалами с образованием радикалов с меньшей реакционной способностью.

Замедлению горения способствует введение веществ, содержащих галогены (хлор, бром, фтор, йод), азот, фосфор и бор. Ингибирование процесса горения в данном случае связано с протеканием реакций гибели активных центров – атомов водорода, кислорода и гидроксильных радикалов:

 

Н· + НХ Н2 + Х·

Н· + Х· + М НХ + М

·ОН + НХ Н2О + Х·

 

Здесь Х – атом галогена.

Для однотипных соединений эффективность галогенсодержащих антипиренов убывает в ряду J > Br > Cl > F. Наибольшее практическое применение находят бром- и хлорсодержащие антипирены. Наибольшей эффективностью обладают соединения с пониженной энергией связи углерод – галоген. Таковыми являются галогенсодержащие алифатические соединения. Чаще всего используют хлорированный парафин, содержащий до 70 % связанного хлора. Реже применяют ароматические хлор или бром содержащие соединения, например, декабромдифенилоксид, тетрахлорфталиевый ангидрид. Ароматические соединения более устойчивы и поэтому в меньшей степени снижают горючесть, но благодаря этому они оказывают меньшее деструктирующее влияние на полимерную композицию.

Одним из эффективных ингибиторов процессов горения и тления различных полимеров считаются органические соединения фосфора, действие которых объясняется следующим способом. При пиролизе полимеров, содержащих соединения фосфора происходит образование фосфорной кислоты и ее ангидридов, которые катализируют дегидратацию и дегидрирование, способствуют процессу карбонизации. Продукты пиролиза соединений фосфора ингибируют реакции в газовой фазе за счет дезактивации активных радикалов в пламени.

2. Образование защитного слоя на поверхности полимера, непроницаемого для кислорода или изолирующего от дальнейшего нагревания.

Механизм действия целого ряда антипиренов (силикаты и алюмосиликаты, бораты металлов, фосфаты, их органические производные) обусловлен преобладающим влиянием на процесс горения образующихся на поверхности защитных слоев. Эти слои состоят из нелетучих остатков (главным образом – окислов металлов), образующихся при разложении неорганических соединений. Антипирены, которые способны создавать плотные поверхностные защитные слои, создают своего рода физический барьер действию пламени на полимер, затрудняют диффузию горючих газов в пламя. К таким антипиренам относятся метаборат бария (ВаВ2О4·Н2О), борат цинка, тетрафторборат аммония.

Так полифосфорные кислоты и ангидриты, образующиеся при горении полимеров, содержащих соединения фосфора, снижают кислородопроницаемость пенококса, образующегося на поверхности горящего полимера, и тем самым замедляют горение. Примерами таких антипиренов являются диаммонийфосфат, магнийортофосфат и др.

3. Выделение негорючих (инертных) газов, препятствующих подводу кислорода в зону горения.

При применении в качестве антипиренов неорганических галогенов замедление горения полимеров может происходить по следующему механизму. NH4Cl или NH4Br при температурах выше 200 и 250 °С соответственно разлагаются на аммиак, HCl и HBr. Газообразные HCl и HBr подавляют горение. Кроме этого, уменьшается процентное содержание кислорода в газовой фазе, что также замедляет горение.

4. Разложение антипиренов или взаимодействие антипиренов и продуктов их деструкци с другими веществами с поглощением тепла, что способствует уменьшению температуры ниже точки воспламенения.

Большую группу веществ, применяемых в качестве антипиренов, составляют вещества, эндотермически разлагающиеся с образованием негорючих продуктов. Сюда можно отнести гидроокиси алюминия, магния, цинка, гидратированные карбонаты металлов, мочевину, дициандиамид и многие другие вещества. Механизм действия таких антипиренов связан с чисто физическим влиянием на тепловой баланс процесса горения. На разложение антипирена, испарение продуктов затрачивается тепло. В результате понижается температура конденсированной фазы. Негорючие продукты, в свою очередь, разбавляют топливо в пламенной зоне реакции, снижают температуру пламени и тем самым уменьшают обратный тепловой поток на поверхность горючего материала. В целом наблюдается замедление процесса горения.

Одним из таких наиболее важных и сравнительно дешевых антипиренов является тригидрат оксида алюминия (гиббсит) Al(OН)3. Он обладает малой удельной поверхностью и размером частиц от 45 мкм для грубодисперсных сортов, до 1 мкм и менее - у тонкодисперсных сортов. Его эффективность обусловлена отводом тепла (1,41 кДж/г) из зоны горения вследствие интенсивного выделения при 230 °С связанной воды (34,6 %). Эта температура близка к температуре воспламенения многих органических веществ. Для существенного повышения огнестойкости полимеров необходимо использовать довольно высокие степени наполнения (от 20 до 250 частей гидроксида алюминия на 100 частей полимера в зависимости от его вида). Это приводит к повышению хрупкости ПКМ, что является главным недостатком этого антипирена.

5. Предотвращение распространения пламени в процессе горения, вследствие дополнительных затрат тепловой энергии на нагревание порошкообразного наполнителя и уменьшения температуры ниже критической точки.

Введение негорючих наполнителей в полимеры позволяет снизить содержание горючей составляющей материала, повлиять на теплофизические характеристики последнего и на условия тепло- и массообмена при горении. Для этой цели кроме дисперсных наполнителей (мел, песок) могут применять и волокнистые (стеклянные волокна, асбест). Обычно для снижения горючести материала наполнители вводят в большом количестве (> 20 мас. %).

Следует отметить, что на самом деле механизм действия антипиренов не сводится к какому-либо одному эффекту, а является более сложным.

Одним из наиболее эффективных антипиренов является оксид сурьмы, используемый в количестве 1 - 15 мас. %. Sb2O3 - кристаллический минеральный порошок белого цвета. Он характеризуется высокой плотностью (5,3 - 5,8 г/см3), размером частиц 0,8 - 2,5 мкм и масляным числом 9 - 12 см3/100г. Его вводят в полимеры в количестве 1 – 15 мас. %.

В некоторых случаях одновременное присутствие в композиции двух или более веществ, препятствующих образованию пламени, способствует достижению значительно большего эффекта по сравнению с эффектами, наблюдаемыми при использовании тех же веществ раздельно. Сверхаддитивное совместное действие двух веществ называется синергизмом.

Самым эффективным антипиреном в настоящее время является оксид сурьмы в сочетании с галогенсодержащими органическими соединениями (оптимальное мольное соотношение Sb: Cl = 1: 3). Эта смесь обладает синергическим эффектом. Предположительный механизм действия этой смеси следующий. Выделяющийся при горении полимера из гологеноорганического соединения хлористый водород взаимодействует с оксидом сурьмы с образованием оксихлорида сурьмы, который, в свою очередь, может разлагаться с выделением трихлорида сурьмы:

 

Sb2O3 + 2HCl 2SbOCl + H2O

 

5SbOCl 245-280°С Sb4O5Cl2 + SbCl3

 

4Sb4O5Cl2 410-475°С 5Sb3O4Cl + SbCl3

 

3Sb3O4Cl 475-565°С 4Sb2O3 + SbCl3

 

Образующийся на конечной стадии оксид сурьмы, являясь порошкообразным наполнителем, вносит свой вклад в замедление горения, создавая дополнительные препятствия для распространения пламени. Газообразный трихлорид сурьмы, в свою очередь, ограничивает подвод кислорода в зону горения. Образование различных соединений при этом сопровождается эндотермическим эффектом, что отнимает энергию от зоны горения и замедляет его.

 

Литература

1. Промышленные полимерные композиционные материалы: Пер. с англ. / Под ред. М. Ричардсона. - М.: Химия, 1980. - 472 с.

2. Наполнители для полимерных композиционных материалов / Под ред. Г.С. Каца и Д.В. Милевски. – М.: Химия, 1081. – 736 с.

3. Р.М. Асеева, Г.Е. Заиков. Снижение горючести полимерных материалов. – М.: Знание, 1981. – 64 с.

4. Принципы создания композиционных полимерных материалов / А.А. Берлин, и др. - М.: Химия, 1990.- 240 с.

 


 

А.Е. Заикин, М.Ф. Галиханов

 

 

ОСНОВЫ СОЗДАНИЯ

ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ

МАТЕРИАЛОВ

 

 

Корректор Ю.Е.Стрыхарь

 


 

Лицензия № 020404 от 6.03.97 г.

 

Подписано в печать 27.04.2001 Формат 60х84 1/16.

Бумага писчая. Печать RISO. 8,14 усл. печ. л.

8,75 уч.-изд. л. Тираж 100 экз. Заказ «С»

 

Издательство Казанского государственного

технологического университета

 

Офсетная лаборатория Казанского государственного

технологического университета

 

420015, Казань, К. Маркса, 68.



Поделиться:


Последнее изменение этой страницы: 2017-01-28; просмотров: 571; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.126.80 (0.02 с.)