Интерполирующий однородный фильтр 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Интерполирующий однородный фильтр



Наиболее просто в цифровом виде реализовать рассмотренный нами ранее однородный фильтр, так как для его реализации не требуются цифровые умножители. Для однородного фильтра седьмого порядка формула выглядит следующим образом:

(16.3)

Структурная схема фильтра, реализующего формулу 16.3, приведена на рис. 16.15.

Рис.16.15. Структурная схема однородного фильтра седьмого порядка

При реализации такого фильтра потребуется 6 сумматоров. Во столько же раз уменьшится быстродействие цифрового фильтра. Можно несколько видоизменить структуру данного фильтра. Для сокращения количества выполняемых операций формула 16.3 может быть переписана в следующем виде:

(16.4)

Эта формула может быть реализована за два действия:

(16.5)

В таком случае для реализации однородного фильтра потребуется два каскада. Второй каскад будет выполнять интегрирование, а первый — фильтр с конечной импульсной характеристикой всего с двумя ненулевыми коэффициентами, равными единице. Новая структурная схема однородного фильтра приведена на рис. 16.16.

Рис.16.16. Структурная схема двухкаскадного фильтра, эквивалентного фильтру, приведенному на рис. 16.15

В этой схеме максимальное время задержки сигнала определяется быстродействием сумматора и временем записи в регистр. Мы увеличили быстродействие схемы почти в семь раз.

Ну а теперь вспомним, что анализируемый фильтр работает при частоте дискретизации сигнала в N раз выше частоты дискретизации входного сигнала. В этом случае для формирования того же самого значения времени задержки до увеличения частоты дискретизации нам потребуется всего только один регистр, так как на его вход тактовой синхронизации будет поступать частота, в шесть раз меньше, чем частота синхронизации на выходе интерполирующего фильтра.

Это означает, что имеет смысл тактировать первую часть фильтра входной частотой дискретизации. Получившаяся в результате всех описанных выше преобразований структурная схема однородного фильтра-интерполятора приведена на рис. 16.17.

Рис.16.17. Структурная схема фильтра-интерполятора, эквивалентного фильтру, приведенному на рис. 16.16.

Новая схема содержит всего два регистра и два двоичных сумматора, то есть данная схема получилась в три раза проще схемы однородного фильтра, приведенной на рис. 16.15.

Получившийся в результате преобразований фильтр трудно назвать однородным, однако для того, чтобы отобразить особенности его импульсной и амплитудно-частотной характеристик, сохраним название ″однородный″ и для этого фильтра. В иностранной литературе такой фильтр получил название CIC-фильтр.

Если по техническому заданию требуется еще больший коэффициент интерполяции по сравнению с рассмотренным выше случаем, то выигрыш при реализации однородного фильтра-интерполятора по схеме, приведенной на рис. 16.17, будет еще большим.

Хотелось бы напомнить, что при анализе характеристик однородного фильтра для получения приемлемого уровня подавления мешающего сигнала нам потребовалось включить друг за другом несколько каскадов.

Давайте включим последовательно друг за другом три фильтра-интерполятора, как это показано на структурной схеме фильтра, приведенной на рис. 16.18.

Рис.16.18. Структурная схема трехкаскадного фильтра-интерполятора (CIC3)

На рис. 16.19 приведена амплитудно-частотная характеристика четырехкаскадного однородного фильтра. Обратите внимание, что образ полезного сигнала сосредоточен около частоты дискретизации исходного сигнала x(t). Проанализировав амплитудно-частотную характеристику четырехкаскадного однородного фильтра можно определить, что этот фильтр в полосе частот высокочастотных образов полезного сигнала может обеспечить подавление мешающих сигналов до 90 дБ, что эквивалентно 16-разрядному представлению полезного сигнала. На приведенном рисунке черным цветом закрашена область частот, которая подавляется однородным интерполирующим фильтром. Остальные частоты (там, где находятся максимумы в полосе подавления однородного фильтра) были подавлены ранее полуполосными интерполирующими фильтрами.

Рис.16.19. Амплитудно-частотная характеристика четырехкаскадного однородного фильтра-интерполятора

На этом закончим обзор особенностей реализации интерполирующих цифровых фильтров.

В заключение я хотел бы привести результирующую структурную схему цифрового квадратурного модулятора, на вход которой можно подавать цифровой поток с частотой отсчетов, в несколько раз более низкой по отношению к требующейся для формирования выходного радиосигнала. В этой схеме на входе умножителей используются интерполирующие фильтры. Схема цифрового квадратурного модулятора приведена на рис. 16.20.

Рис.16.20. Структурная схема квадратурного модулятора с низкоскоростным потоком квадратурных сигналов

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 239; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.239.195 (0.007 с.)