Использование гипотез и аналогий в исследовании систем. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Использование гипотез и аналогий в исследовании систем.



В научных исследованиях большую роль играют гипотезы, т. е.

определенные предсказания, основывающиеся на небольшом количестве

опытных данных, наблюдений, догадок. Быстрая и полная

проверка выдвигаемых гипотез может быть проведена в ходе специально

поставленного эксперимента. При формулировании и проверке

правильности гипотез большое значение в качестве метода суждения

имеет аналогия.

 

Аналогией называют суждение о каком-либо частном сходстве

двух объектов, причем такое сходство может быть существенным

и несущественным.

Необходимо отметить, что понятия существенности

и несущественности сходства или различия объектов условны

и относительны. Существенность сходства (различия) зависит от

уровня абстрагирования и в общем случае определяется конечной

целью проводимого исследования. Современная научная гипотеза

создается, как правило, по аналогии с проверенными на практике

научными положениями. Таким образом, аналогия связывает гипотезу

с экспериментом.

 

Гипотезы и аналогии, отражающие реальный, объективно существующий

мир, должны обладать наглядностью или сводиться

к удобным для исследования логическим схемам; такие логические

схемы, упрощающие рассуждения и логические построения или

позволяющие проводить эксперименты, уточняющие природу явлений,

называются моделями. Другими словами, модель (лат.

modulus — мера) — это объект-заместитель объекта-оригинала,

обеспечивающий изучение некоторых свойств оригинала.

  1. Отличие использования метода моделирования при внешнем и внутреннем проектировании систем

Независимо от разбиения конкретной сложной системы на

подсистемы при проектировании каждой из них необходимо выполнить

внешнее проектирование (макропроектирование) и внутреннее

проектирование (микропроектирование). Так как на этих стадиях

разработчик преследует различные цели, то и используемые при

этом методы и средства моделирования могут существенно отличаться.

На стадии макропроектирования должна быть разработана обобщенная

модель процесса функционирования сложной системы,

позволяющая разработчику получить ответы на вопросы об эффективности

различных стратегий управления объектом при его взаимодействии

с внешней средой. Стадию внешнего проектирования

можно разбить на анализ и синтез. При анализе изучают объект

управления, строят модель воздействий внешней среды, определяют

критерии оценки эффективности, имеющиеся ресурсы, необходимые

ограничения. Конечная цель стадии анализа — построение модели

объекта управления для оценки его характеристик. При синтезе на

этапе внешнего проектирования решаются задачи выбора стратегии

управления на основе модели объекта моделирования, т. е. сложной

системы.

На стадии микропроектирования разрабатывают модели с целью

создания эффективных подсистем. Причем используемые методы

и средства моделирования зависят от того, какие конкретно

обеспечивающие подсистемы разрабатываются: информационные,

математические, технические, программные и т. д.

  1. Сущность системного подхода к моделированию систем.

В настоящее время при анализе и синтезе сложных (больших) систем получил развитие системный подход, который отличается от классического (или индуктивного) подхода. Последний рассматривает систему путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, разрабатыва-емых раздельно.

В отличие от этого системный подход предполага-ет последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.

 

Объект моделирования. Специалисты по проектированию и эксплуатации сложных систем имеют дело с системами управления различных уровней, обладающими общим свойством -- стремлением достичь некоторой цели. Эту особенность учтем в следующих определениях системы.

Система S -- целенаправленное множество! взаимосвязанных элементов любой природы.

Внешняя среда Е-- множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздействием. '

 

В зависимости от цели исследования могут рассматриваться разные соотношения между самим объектом S и внешней средой Е. Таким образом, в зависимости от уровня, на котором находится наблюдатель, объект исследования может выделяться по-разному и могут иметь место различные взаимодействия этого объекта с внешней средой.

 

С развитием науки и техники сам объект непрерывно усложняет-ся, и уже сейчас говорят об объекте исследования как о некоторой сложной системе, которая состоит из различных компонент, вза-имосвязанных друг с другом. Поэтому, рассматривая системный подход как основу для построения больших систем и как базу создания методики их анализа и синтеза, прежде всего необходимо определить само понятие системного подхода.

 

Системный подход -- это элемент учения об общих законах развития природы и одно из выражений диалектического учения. Можно привести разные определения системного подхода, но на-иболее правильно то, которое позволяет оценить познавательную сущность этого подхода при таком методе исследования систем, как моделирование. Поэтому весьма важны выделение самой системы S и внешней среды Е из объективно существующей реальности и описание системы исходя из общесистемных позиций.

 

При системном подходе к моделированию систем необходимо прежде всего четко определить цель моделирования. Поскольку невозможно полностью смоделировать реально функционирующую систему (систему-оригинал, или первую систему), создается модель (система-модель, или вторая система) под поставленную проблему. Таким образом, применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет по-дойти к выбору критерия и оценить, какие элементы войдут в со-здаваемую модель М. Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.

2 вариант

Моделирование является одним из наиболее важных методов научного исследования и экспериментирования. При построении моделей объектов используется системный подход (Под системой понимают группу взаимосвязанных элементов, действующих совместно с целью выполнения заранее поставленной задачи), представляющий собой методологию решения сложных задач, в основе которой лежит рассмотрение объекта как системы, функционирующей в некоторой среде. Системный подход предполагает раскрытие целостности объекта, выявление и изучение его внутренней структуры, а также связей с внешней средой.

При этом объект представляется как часть реального мира, которая выделяется и исследуется в связи с решаемой задачей построения модели. Кроме этого, системный подход предполагает последовательный переход от общего к частному, когда в основе рассмотрения лежит цель проектирования, а объект рассматривается во взаимосвязи с окружающей средой.

Сложный объект может быть разделен на подсистемы, представляющие собой части объекта, удовлетворяющие следующим требованиям:

1) подсистема является функционально независимой частью объекта. Она связана с другими подсистемами, обменивается с ними информацией и энергией;

2) для каждой подсистемы могут быть определены функции или свойства, не совпадающие со свойствами всей системы;

3) каждая из подсистем может быть подвергнута дальнейшему делению до уровня элементов.

В данном случае под элементом понимается подсистема нижнего уровня, дальнейшее деление которой нецелесообразно с позиций решаемой задачи.

Таким образом, систему можно определить как представление объекта в виде набора подсистем, элементов и связей с целью его создания, исследования или усовершенствования. При этом укрупненное представление системы, включающее в себя основные подсистемы и связи между ними, называется макроструктурой, а детальное раскрытие внутреннего строения системы до уровня элементов – микроструктурой [19].

Наряду с системой обычно существует надсистема – система более высокого уровня, в состав которой входит рассматриваемый объект, причём функция любой системы может быть определена только через надсистему. Следует выделить понятие среды как совокупности объектов внешнего мира, существенно влияющих на эффективность функционирования системы, но не входящих в состав системы и ее надсистемы [19].

В связи с системным подходом к построению моделей используется понятие инфраструктуры, описывающей взаимосвязи системы с ее окружением (средой).

При этом выделение, описание и исследование свойств объекта, существенных в рамках конкретной задачи называется стратификацией объекта, а всякая модель объекта является его стратифицированным описанием.

Для системного подхода важным является определение структуры системы, т.е. совокупности связей между элементами системы, отражающих их взаимодействие. Для этого вначале рассмотрим структурный и функциональный подходы к моделированию.

На базе системного подхода может быть предложена последовательность разработки моделей, когда выделяют две основные стадии проектирования: макропроектирование и микропроектирование.

На стадии макропроектирования строится модель внешней среды, выявляются ресурсы и ограничения, выбирается модель системы и критерии для оценки адекватности.

Стадия микропроектирования в значительной степени зависит от конкретного типа выбранной модели. В общем случае предполагает создание информационного, математического, технического и программного обеспечения системы моделирования. На этой стадии устанавливаются основные технические характеристики созданной модели, оцениваются время работы с ней и затраты ресурсов для получения заданного качества модели.

Независимо от типа модели при ее построении необходимо руководствоваться рядом принципов системного подхода:

1) последовательное продвижение по этапам создания модели;

2) согласование информационных, ресурсных, надежностных и других характеристик;

3) правильное соотношение различных уровней построения модели;

4) целостность отдельных стадий проектирования модели.

  1. Процесс функционирования системы.

При функциональном подходе рассматриваются отдельные функции, т. е. алгоритмы поведения системы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отображает свойство, а свойство отображает взаимодействие системы S с внешней средой Е, то свойства могут быть выражены в виде либо некоторых характеристик элементов Si(j) и подсистем Si,- системы, либо системы S в целом.

При наличии некоторого эталона сравнения можно ввести количественные и качественные характеристики систем.

Для количественной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном.

Качественные характеристики системы находятся, например, с помощью метода экспертных оценок.

Проявление функций системы во времени S(t), т. е. функционирование системы, означает переход системы из одного состояния в другое, т. е. движение в пространстве состояний Z. При эксплуатации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности.

Существуют различные подходы к выбору критериев оценки эффективности. Система S может оцениваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.

Создаваемая модель М с точки зрения системного подхода также является системой, т. е. S' = S'(M), и может рассматриваться по отношению к внешней среде Е.

  1. Классификационные признаки видов моделирования систем.

В основе моделирования лежит теория подобия, которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.

В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на:

· полные,

· неполные

· приближенные.

В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве.

Для неполного моделирования характерно неполное подобие модели изучаемому объекту.

В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем

Классификационные признаки моделирования систем S приведены на рис. 1.

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены:

· детерминированные;

· стохастические;

· статические и динамические;

· дискретные;

· непрерывные;

· дискретно-непрерывные.

 

Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий.

стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики, т. е. набор однородных реализаций.

Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени.

Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту.

Мысленное моделирование может быть реализовано в виде:

· наглядного;

· символического;

· математического.

При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте.

1) В основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следстненных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

2) Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

3) Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования.

В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий — составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.

В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия.

Тезаурус — словарь, который очищен от неоднозначности, т. е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов.

Математическое моделирование. Для исследования характеристик процесса функционирования любой системы S математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т. е. построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на:

· аналитическое,

· имитационное,

· комбинированное.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений или логических условий. Аналитическая модель может быть исследована следующими методами:

а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;

б) численным, когда, не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных;

в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы S во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы S.

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование — наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования.

Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы =, и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой комбинированный подход позиоляет охватить каче­ственно новые классы систем, которые пе могут быть исследованы с использованием только аналитического и имитационного модели­рования в отдельности.

При реальном моделировании используется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик. Реальное моделирование является наиболее адекватным, но при этом его возможности с учетом особенностей реальных объектов ограничены.

Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия.

С развитием техники и проникновением в глубь процессов, протекающих в реальных системах, возрастает техническая оснащенность современного научного эксперимента. Он характеризуется широким использованием средств автоматизации проведения, применением весьма разнообразных средств обработки информации, возможностью вмешательства человека в процесс проведения эксперимента, и в соответствии с этим появилось новое научное направление — автоматизация научных экспериментом.

Отличие эксперимента от реального протекания процесса заключается в том, что в нем могут появиться отдельные критические ситуации и определяться границы устойчивости процесса.

Другим видом реального моделирования является физическое, отличающееся от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и нереальном (псевдореальном) масштабах времени, а также может рассматриваться без учета времени. В последнем случае изучению подлежат так называемые «замороженные» процессы, которые фиксируются в некоторый момент времени. Наибольшие сложность и интерес с точки зрения верности получаемых результатов представляет физическое моделирование в реальном масштабе времени.

С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на:

· аналоговые (непрерывные),

· цифровые (дискретные),

· аналого-цифровые (комбинированные).

Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины.

Под цифровой понимают модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде.

Под аналого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

Особое место в моделировании занимает кибернетическое моделирование, в котором отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

  1. Математическое моделирование систем.

Математическое моделирование. Для исследования характеристик

процесса функционирования любой системы S" математическими

методами, включая и машинные, должна быть проведена

формализация этого процесса, т. е. построена математическая модель.

 

Под математическим моделированием будем понимать процесс

установления соответствия данному реальному объекту некоторого

математического объекта, называемого математической моделью,

и исследование этой модели, позволяющее получать характеристики

рассматриваемого реального объекта. Вид математической модели

зависит как от природы реального объекта, так и задач исследования

объекта и требуемой достоверности и точности решения

этой задачи. Любая математическая модель, как и всякая другая,

описывает реальный объект лишь с некоторой степенью приближения

к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.

 

 

Для аналитического моделирования характерно то, что процессы

функционирования элементов системы записываются в виде некоторых

функциональных соотношений (алгебраических, интегродифференпиальных,

конечно-разностных и т. п.) или логических условий.

 

При имитационном моделировании реализующий модель алгоритм

воспроизводит процесс функционирования системы S во времени,

причем имитируются элементарные явления, составляющие

процесс, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным

получить сведения о состояниях процесса в определенные моменты

времени, дающие возможность оценить характеристики системы

S.

 

Комбинированное (аналитико-имитационное) моделирование при

анализе и синтезе систем позволяет объединить достоинства аналитического

и имитационного моделирования. При построении комбинированных

моделей проводится предварительная декомпозиция

процесса функционирования объекта на составляющие подпроцессы

и для тех из них, где это возможно, используются аналитические

модели, а для остальных подпроцессов строятся имитационные

модели. Такой комбинированный подход позволяет охватить качественно

новые классы систем, которые не могут быть исследованы

с использованием только аналитического и имитационного моделирования

в отдельности.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 562; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.141.6 (0.088 с.)