Определение понятия «моделирование». 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Определение понятия «моделирование».



ВОПРОСЫ К ГОСУДАРСТВЕННОМУ ЭКЗАМЕНУ

Дисциплина «Моделирование систем»

 

Понятие модели системы.

Модель – это физический или абстрактный образ моделируемого объекта, удобный для проведения исследований и позволяющий адекватно отображать интересующие исследователя физические свойства и характеристики объекта.

логические схемы, упрощающие рассуждения и логические построения или позволяющие проводить эксперименты, уточняющие природу явле­ний, называются моделями.

модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала

К характеристикам модели системы относится:

· цели функционирования;

· сложность системы;

· целостность системы;

· неопределенность, которая проявляется в системе;

· поведение системы;

· адаптивность системы;

· организационная структура модели;

· управление модели;

· возможность развития модели.

 

Метод статистического моделирования.

Суть данного метода состоит в том, что результат испытания зависит от случайной величины, распределенной по закону (напр. Равномерный, экспотенциальный, нормальный.)

 

Результат каждого отдельного исследования носит случайный характер. Проведя серию испытаний, получают множество значений наблюдаемой величины.

Погрешность результатов понижается с увеличением числа наблюдений.

 

Особенностью метода является то, что получаемая в результате моделирования информация по своей природе аналогична той информации, которую можно было бы получить в процессе исследования реальной системы, однако объем ее значительно больший и на ее получение затрачивается меньше средств и времени. Отсюда следует эффективность использования метода моделирования, а также высокая точность и достоверность получаемых с его помощью результатов по сравнению с исследованием реальной системы.

 

Метод моделирования обычно используется для решения двух классов задач: детерминированных и вероятностных. Наибольший практический интерес представляет применение метода к вероятностным задачам, что позволяет решать задачи, не сформулированные в виде уравнений или формул.

В основе решения на ЭВМ вероятностных задач лежит моделирование случайных явлений. Различные случайные величины, характеризующие отдельные стороны исследуемого процесса, воспроизводятся на ЭВМ с помощью случайных чисел в соответствии с заданными законами распределения.

 

Теоретической основой метода моделирования служит закон больших чисел. Следовательно, этот метод основан на самых общих теоремах теории вероятностей и принципиально не содержит никаких ограничений.

Достоинства метода.

· Может быть применен для исследования любой системы с известным аолгоритмом функционирования

· Можно требовать любой точности

· Позволяет полнее учесть особенности функционирования исследуемой системы

· Использует любые законы распледеления

· Наглядная вероятностная трактовка

· Простая вычислительная схема, малочувствительная к случайным сбоям ЭВМ

Вместе с тем метод моделирования обладает рядом недостатков, наиболее существенными из которых являются большая трудоемкость и частный характер решения. Эффективными путями преодоления этих недостатков являются:

· разработка обобщенных универсальных подходов к построению моделирующих алгоритмов для исследования процессов функционирования систем различных классов;

· создание библиотеки стандартных подалгоритмов и подпрограмм, моделирующих все основные типовые операции, встречающиеся при решении различных задач, и используемых как готовые стандартные блоки (например, моделирование случайных величин с различными законами распределения, оценка точности результатов, построение гистограмм случайных величин и т. п.);

· создание библиотеки стандартных алгоритмов и программ для решения основных типовых задач исследования систем;

 

 

Математическую схему можно определить как звено при переходе от содержательного к формальному описанию процесса функционирования системы с учетом воздействия внешней среды, т. е. имеет место цепочка «описательная модель — математическая схема

— математическая [аналитическая или (и) имитационная] модель

».

Для использования ЭВМ при решении прикладных задач, прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Типовые схемы моделирования:

N-схемы (сети Петри)

Математический аппарат для моделирования динамических дискретных систем. Часто приходится решать задачи, с анализом причинно-следственных связей, где одновременно протекают параллельно несколько процессов. Наиболее распространенные теории, которые описывают поведение таких объектов это: сети петри и баесовские сети доверия.

Сеть Петри представляет собой двудольный ориентированный граф, состоящий из вершин двух типов — позиций и переходов, соединённых между собой дугами. Вершины одного типа не могут быть соединены непосредственно. В позициях могут размещаться метки (маркеры), способные перемещаться по сети.

Событием называют срабатывание перехода, при котором метки из входных позиций этого перехода перемещаются в выходные позиции. События происходят мгновенно, либо разновременно, при выполнении некоторых условий.

Рис. Пример сети Петри. Белыми кружками обозначены позиции, полосками — переходы, чёрными кружками — метки.

N-схемы (сети Петри)

Математический аппарат для моделирования динамических дискретных систем. Часто приходится решать задачи, с анализом причинно-следственных связей, где одновременно протекают параллельно несколько процессов. Наиболее распространенные теории, которые описывают поведение таких объектов это: сети петри и баесовские сети доверия.

Сеть Петри представляет собой двудольный ориентированный граф, состоящий из вершин двух типов — позиций и переходов, соединённых между собой дугами. Вершины одного типа не могут быть соединены непосредственно. В позициях могут размещаться метки (маркеры), способные перемещаться по сети.

Событием называют срабатывание перехода, при котором метки из входных позиций этого перехода перемещаются в выходные позиции. События происходят мгновенно, либо разновременно, при выполнении некоторых условий.

Рис. Пример сети Петри. Белыми кружками обозначены позиции, полосками — переходы, чёрными кружками — метки.

N-схемы (Сетевые модели)

В практике моделирования объектов часто приходится решать задачи, связанные с формализованным описанием и анализом причинно-следственных связей в сложных системах, где одновременно параллельно протекает несколько процессов. Самым распространенным в настоящее время формализмом, описывающим структуру и взаимодействие параллельных систем и процессов, являются сети Петри (англ. Petri Nets), предложенные К. Петри.

Теория сетей Петри развивается в нескольких направлениях:

1. разработка математических основ,

2. структурная теория сетей,

3. различные приложения (параллельное программирование, дискретные динамические системы и т. д.).

Типовые N-схемы на основе обычных размеченных сетей Петри пригодны для описания в моделируемой системе S событий произвольной длительности. В этом случае модель, построенная с использованием таких N-схем, отражает только порядок наступления событий в исследуемой системе S. Для отражения временных параметров процесса функционирования моделируемой системы S на базе N-схем используется расширение аппарата сетей Петри: временные сети, E -сети.

Требования, предъявляемые к модели, реализуемой в реальном масштабе времени.

особенностью моделирования для принятия решений по управлению объектом в реальном масштабе времени является существенная ограниченность вычислительных ресурсов, так как такие системы управления, а следовательно, и машинные модели Мм, реализуются, как правило, на базе мини и микро ЭВМ или специализированных микропроцессорных наборов, когда имеется ограничение по быстродействию и объему памяти. Это требует тщательного подхода к минимизации затрат ресурсов по моделированию в реальном масштабе времени.

Кроме того, следует учитывать, что достоверность и точность решения задачи моделирования (прогнозирования ситуаций или поведения) системы существенно зависят от количества реализаций N, которые затрачены на получение статистического прогноза. Таким образом, возникает проблема поиска компромисса между необходимостью увеличения затрат времени на моделирование, т. е. числа реализаций N [на интервале (0, Т)]для повышения точности и достоверности результатов моделирования (прогнозирования), и необходимостью уменьшения затрат машинного времени из условий управления в реальном масштабе времени.

При использовании машинной модели Мм в контуре управления системой S в реальном масштабе времени возникает также проблема оперативного обновления информации как в базе данных об объекте, так и в базе данных об эксперименте, т. е. в данном случае о конкретном прогнозе.

Что такое поток событий?

 

Под потоком событий понимается последовательность событий, происходящих одно за другим в какие-то моменты времени. Примерами могут служить: поток вызовов на телефонной станции; поток включений приборов в бытовой электросети; поток заказных писем, поступающих в почтовое отделение; поток сбоев (неисправностей) электронной вычислительной машины; поток выстрелов, направляемых на цель во время обстрела, и т. п. События, образующие поток могут быть как различными, так и однородными, т.е. различающихся только моментами появления. Такой поток можно изобразить как последовательность точек на числовой оси моментам появления событий.

Рис. 1

 

 

Поток событий называется регулярным, если события следуют одно за другим через строго определенные промежутки времени. Такой поток сравнительно редко встречается в реальных системах, но представляет интерес как предельный случай. Типичным для системы массового обслуживания является случайный поток заявок.

 

Формулой Эйлера.

Тогда:

или

Очевидно, чтобы узнать состояние системы в будущем y (t + Δ t), надо к настоящему состоянию системы y (t) прибавить изменение Δ y, прошедшее за время Δ t.

будущее = настоящее + изменение

 

 

 

будущее = настоящее + скорость · шаг

 

 

71.Формулой Эйлера при Δt≠0.

Эта формула может дать точные результаты только при очень малых Δ t (говорят при Δ t –> 0). ПриΔ t ≠0 формула дает расхождение между истинным значением y и расчетным, равное ε, поэтому в ней должен стоять знак приближенного равенства, либо она должна быть записана так:

y (t + Δ t) = y (t) + Δ t · f (x (t), y (t), t) + ε.

ВОПРОСЫ К ГОСУДАРСТВЕННОМУ ЭКЗАМЕНУ

Дисциплина «Моделирование систем»

 

Понятие модели системы.

Модель – это физический или абстрактный образ моделируемого объекта, удобный для проведения исследований и позволяющий адекватно отображать интересующие исследователя физические свойства и характеристики объекта.

логические схемы, упрощающие рассуждения и логические построения или позволяющие проводить эксперименты, уточняющие природу явле­ний, называются моделями.

модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала

К характеристикам модели системы относится:

· цели функционирования;

· сложность системы;

· целостность системы;

· неопределенность, которая проявляется в системе;

· поведение системы;

· адаптивность системы;

· организационная структура модели;

· управление модели;

· возможность развития модели.

 

Определение понятия «моделирование».

 

Моделирование (в широком смысле) является основным методом исследований

во всех областях знаний и научно обоснованным методом оценок

характеристик сложных систем, используемым для принятия решений в различных

сферах инженерной деятельности. Существующие и проектируемые

системы можно эффективно исследовать с помощью математических моделей

(аналитических и имитационных), реализуемых на современных ЭВМ, которые

в этом случае выступают в качестве инструмента экспериментатора с моделью

системы.

Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием. Таким образом, моделирование может быть определено как представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью. Теория замещения одних объектов (оригиналов) другими объектами (моде­лями) и исследования свойств объектов на их моделях называется теорией моделирования.

Определяя гносеологическую роль теории моделирования, т. е. ее значение в процессе познания, необходимо, прежде всего, отвлечь­ся от имеющегося в науке и технике многообразия моделей и выде­лить то общее, что присуще моделям различных по своей природе объектов реального мира. Это общее заключается в наличии неко­торой структуры (статической или динамической, материальной или мысленной), которая подобна структуре данного объекта. В процессе изучения модель выступает в роли относительного самостоятельного квазиобъекта, позволяющего получить при ис­следовании некоторые знания о самом объекте.

Если результаты моделирования подтверждаются и могут слу­жить основой для прогнозирования процессов, протекающих в ис­следуемых объектах, то говорят, что модель адекватна объекту. При этом адекватность модели зависит от цели моделирования и принятых критериев.

Обобщенно моделирование можно определить как метод опос­редованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса. Стадии познания, на которых происходит такая замена, а также формы соответствия модели и оригинала могут быть различными:

1) моделирование как познавательный процесс, содержащий пе­реработку информации, поступающей из внешней среды, о проис­ходящих в ней явлениях, в результате чего в сознании появляются образы, соответствующие объектам;

2) моделирование, заключающееся в построении некоторой системы-модели (второй системы), связанной определенными соот­ношениями подобия с системой-оригиналом (первой системой), причем в этом случае отображение одной системы в другую являет­ся средством выявления зависимостей между двумя системами, отраженными в соотношениях подобия, а не результатом непосред­ственного изучения поступающей информации.

Следует отметить, что с точки зрения философии моделиро­вание — эффективное средство познания природы. Процесс мо­делирования предполагает наличие объекта исследования; иссле­дователя, перед которым поставлена конкретная задача; модели, создаваемой для получения информации об объекте и необходи­мой для решения поставленной задачи. Причем по отношению к модели исследователь является, по сути дела, экспериментатором, только в данном случае эксперимент проводится не с реальным объектом, а с его моделью. Такой эксперимент для инженера есть инструмент непосредственного решения организационно-техничес­ких задач.

Надо иметь в виду, что любой эксперимент может иметь сущест­венное значение в конкретной области науки только при специаль­ной его обработке и обобщении. Единичный эксперимент никогда не может быть решающим для подтверждения гипотезы, проверки теории. Поэтому инженеры (исследователи и практики) должны быть знакомы с элементами современной методологии теории по­знания и, в частности, не должны забывать основного положения материалистической философии, что именно экспериментальное ис­следование, опыт, практика являются критерием истины.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 280; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.85.33 (0.038 с.)