Лекция № 2. Структурные и функциональные принципы организации нервной системы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лекция № 2. Структурные и функциональные принципы организации нервной системы



ЛЕКЦИЯ № 2. СТРУКТУРНЫЕ И ФУНКЦИОНАЛЬНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ НЕРВНОЙ СИСТЕМЫ

 

Взаимодействие сенсорных, моторных и мотивационных систем в переработке информации

 

Представьте себе действия человека, решившего выпить стакан чаю. Он подогревает на газовой или электрической плите воду, насыпает в чайник заварку, заливает её кипятком, ждёт положенное для заваривания время, наполняет стакан, добавляет в него сахар - весь порядок этих простых действий определяет нервная система.

Чтобы совершать нужные действия, необходима информация о расположении участвующих в них предметов, о их давлении на руки, о положении самих рук и тела в пространстве. Все эти сведения собирают специализированные только на приёме информации нервные клетки (нейроны). Полученную информацию они кодируют нервными импульсами и передают её другим нейронам для дальнейшей переработки. Объединение клеток, непосредственно получающих информацию, с нейронами, занятыми её последующей переработкой, образует сенсорную или чувствительную систему.

Другие нейроны специализируются на создании команд для производства необходимых движений, удержания нужных предметов в руке, сохранения или изменения положения туловища, ног. Готовые команды в виде нервных импульсов поступают к определённым мышцам: каждое движение происходит благодаря сокращению одних и расслаблению других мышц, их совместную деятельность координируют специальные нервные клетки. Совокупность нейронов, готовящих команды для мышц, и нервных клеток, непосредственно управляющих мышцами. образует моторную или двигательную систему.

Стоит задуматься и над обстоятельствами, побуждающими человека к тому или иному действию, например, к чаепитию. Была ли это жажда, вызванная предшествующей потерей жидкости, например, при обильном потении в бане, связано ли это поведение с желанием взбодрить себя или оно обусловлено приходом случайного гостя? Во всех случаях можно найти чем-то обусловленное побуждение к действию - мотивацию поведения. Любая же мотивация возникает как результат активности определённых структур мозга, которые можно объединить в мотивационную систему.

Несомненно, что разные системы взаимодействуют друг с другом. Обычно сенсорные системы активируют мотивационную, а она, в свою очередь, побуждает моторную систему создавать необходимые команды. Одновременно происходят изменения активности вегетативной нервной системы, регулирующей деятельность внутренних органов, которая должна быть согласована с моторной деятельностью. Все системы сотрудничают при любых, даже самых простых видах деятельности.

Сенсорные, моторные и мотивационные системы образованы большим количеством нейронов, объединённых друг с другом не случайно, а в строго определённом порядке, где каждый нейрон занимает своё место, как мелкая деталь в сложном механизме. Положение отдельных нейронов определяется генетическим кодом и в основном устанавливается ещё до рождения - во время внутриутробного развития. Функция нервной системы в целом заключается в восприятии информации, её переработке и передаче исполнительным органам, которыми могут быть мышцы (в том числе мышцы внутренних органов, сердечная мышца) и железы внешней секреции; особым способом нервная система взаимодействует с железами внутренней секреции - эндокринной системой. Конечной целью всей этой деятельности является обеспечение взаимодействия организма со средой, приспособление к постоянно меняющимся условиям существования.

 

Спинной мозг

 

Спинной мозг имеет сегментарное строение и расположен в позвоночном канале, занимая в нём пространство от основания черепа до первого - второго поясничных позвонков. Рострально (от лат. rostrum - клюв, т.е. на переднем конце) он соединяется со стволом головного мозга, а каудально (от лат. cauda - хвост) не достигает конца позвоночного канала, оканчиваясь на границе первого и второго поясничных позвонков т.н. конским хвостом, образованным корешками поясничных и крестцовых сегментов. Разная длина позвоночника и спинного мозга объясняется тем, что во время развития и роста позвоночник удлиняется больше, чем спинной мозг. Отсутствие спинного мозга каудальнее второго поясничного позвонка позволяет выполнять там диагностическое пунктирование, чтобы взять для исследования спинномозговую жидкость.

Спинной мозг содержит 31 сегмент, от каждого сегмента в обе стороны идут спинномозговые нервы, образованные соединением задних чувствительных и передних двигательных корешков. Спинномозговые нервы выходят из позвоночного канала через межпозвонковые отверстия, затем их двигательные волокна направляются к мышцам, а чувствительные - к своим окончаниям в коже, мышцах, суставах и внутренних органах. Связь каждого сегмента с областью иннервации осуществляется по жёсткой топографической схеме: двигательные волокна управляют строго определёнными мышцами, а чувствительные получают информацию от определённых регионов: например, в коже это ограниченные участки или дерматомы.

В спинном мозгу различают серое и белое вещество. В расположенном центрально сером веществе преобладают тела нервных клеток, тогда как белое вещество состоит преимущественно из множества отростков нейронов: по ним передаётся информация от одних сегментов спинного мозга к другим, от спинного мозга - к головному (восходящие пути) и наоборот, от головного мозга - к спинному (нисходящие пути).

Спинной мозг - филогенетически самая старая структура мозга и большинство нейронных соединений в нём очень устойчивы, разные в функциональном отношении нейроны идеально подогнаны друг к другу. Это позволяет спинному мозгу самостоятельно регулировать простейшие двигательные и вегетативные реакции, такие, например, как отдёргивание руки от горячего предмета или опорожнение мочевого пузыря при значительном растяжении его стенок Но даже при выполнении таких стандартных реакций спинной мозг находится под постоянным контролем головного мозга. Ему спинной мозг поставляет сенсорную информацию, а от него получает большинство двигательных программ и указания по части вегетативной регуляции.

 

 

Ствол мозга

Ствол мозга включает в себя три анатомические структуры: продолговатый мозг, мост и средний мозг. Рострально от спинного мозга находится продолговатый мозг, его прямым продолжением является мост, отграниченный резко очерченным выступом - он образован многочисленными волокнами, служащими для связи с мозжечком. Средний мозг расположен рострально от моста и включает в себя четверохолмие и ножки мозга, выходящие из моста и погружающиеся в большие полушария. В сером веществе ствола содержатся скопления нейронов, представляющих собой ядра двенадцати пар черепномозговых нервов, каждая из которых имеет свой порядковый номер

Таблица

Мозжечок

Расположен дорсально относительно моста и продолговатого мозга, непосредственно над ним находятся затылочные доли большого мозга. Мозжечок получает сенсорную информацию от всех систем, возбуждающихся во время движения, а также от других регионов мозга, которые участвуют в создании двигательных программ. Передача информации к мозжечку и от него осуществляется по многочисленным нервным волокнам, образующим ножки мозжечка: три пары таких ножек анатомически и функционально соединяют мозжечок со стволом мозга.

Строение мозжечка довольно сложное: он имеет собственную кору, состоящую из огромного количества клеток нескольких разновидностей, а под корою, среди белого вещества проводящих волокон, располагаются несколько пар ядер мозжечка. Функция мозжечка состоит, в первую очередь, в формировании двигательных программ, необходимых для поддержания равновесия, регуляции силы и объёма движений: особенно важна роль мозжечка в регуляции быстрых движений.

 

Промежуточный мозг

 

Объединяет две соседние структуры мозга: зрительные бугры или таламус и гипоталамус (подбугорье). Зрительные бугры расположены по обе стороны третьего желудочка мозга и содержат большое количество переключательных ядер. Таламус является исключительно важным центром переработки почти всей сенсорной информации, это главная переключательная станция на пути передачи информации к коре мозга. Некоторые ядра таламуса получают сенсорную информацию с периферии, перерабатывают её и передают к определённым топографическим областям коры, которые специализируются на анализе только одного вида информации - зрительной, слуховой, соматосенсорной (воспринимающей сигналы от поверхности тела и от скелетных мышц). Таламические ядра такого типа называются специфическими или проекционными. Ядра другого типа, неспецифические, получают сигналы в основном от нейронов ретикулярной формации, такая информация не несёт сведений о специфических качествах действующих на организм раздражителей. Нейроны неспецифических ядер таламуса влияют на различные области коры. В свою очередь нейроны коры больших полушарий способны влиять на активность таламических нейронов, связи между таламусом и корой можно назвать двусторонними.

Наряду с сенсорными в таламусе существуют и моторные ядра: с помощью нейронов этих ядер устанавливаются связи между моторной корой, мозжечком и подкорковыми ядрами - три эти структуры мозга формируют двигательные программы. Ещё одна группа ядер таламуса необходима для того, чтобы обеспечить взаимодействие различных регионов коры друг с другом и с подкорковыми структурами. Такие ядра можно назвать ассоциативными, они нередко связаны друг с другом с помощью отростков своих нейронов. Благодаря своим многочисленным связям с различными регионами мозга таламус вовлекается в осуществление многих функций: например, при его участии лимбическая система формирует эмоции, гипоталамус управляет работой внутренних органов, а различные области коры осуществляют деятельность, связанную с психическими процессами.

Гипоталамус расположен в вентральной части промежуточного мозга непосредственно над гипофизом. Он является высшим центром регуляции вегетативных функций и координирует деятельность симпатического и парасимпатического отделов вегетативной нервной системы, согласует её с двигательной активностью. Он также управляет секрецией гормонов гипофиза, контролируя тем самым эндокринную регуляцию внутренних процессов. Некоторые из многочисленных ядер гипоталамуса регулируют водно-солевой баланс организма, температуру тела, чувство голода и насыщения, половое поведение. Гипоталамус является важнейшей мотивационной структурой мозга, в связи с этим он имеет прямое отношение к формированию эмоций и к организации целенаправленного поведения. Функции гипоталамуса обеспечиваются благодаря его двусторонним связям со многими регионами головного мозга и со спинным мозгом. Кроме того, многие нейроны гипоталамуса способны непосредственно реагировать на изменения внутренней среды организма.

 

Конечный мозг (полушария)

Симметрично расположенные полушария мозга соединяются друг с другом приблизительно 200 миллионами нервных волокон, образующих т.н. мозолистое тело. В каждом полушарии различают кору мозга и находящиеся в глубине полушарий подкорковые ядра: базальные ганглии, гиппокамп и миндалины мозга.

Базальные ганглии - объединяют полосатое тело, состоящее из хвостатого ядра и скорлупы, и бледный шар. Они получают входную информацию от всех областей коры и от ствола мозга, а через ядра таламуса и от мозжечка, и используют её для формирования двигательных программ. Помимо этого базальные ганглии принимают участие в познавательной деятельности мозга.

Гиппокамп и миндалины являются важными компонентами лимбической системы мозга, формирующей эмоции. Гиппокамп необходим для образования следов памяти, для трансформации кратковременной памяти в долговременную. Миндалины координируют вегетативные и эндокринные реакции, связанные с эмоциональными переживаниями

Наружная поверхность полушарий представлена корой - по количеству нервных клеток это самый большой регион мозга. Площадь этой поверхности, вписанной в ограниченное черепом пространство, увеличена за счёт многочисленных складок, выглядящих как извилины, разделённые бороздами. Толщина серого вещества мозговой коры варьирует между 1,5 - 5 мм, нейроны расположены в ней слоями. В большей части коры есть шесть слоёв, различающихся между собой по составу образующих каждый слой клеток.

На поверхности каждого полушария принято различать четыре доли. Кпереди от глубокой центральной борозды расположены лобные доли, позади неё - теменные. Латеральные или сильвиевы борозды отделяют от лобных и теменных долей височные доли, а затылочно-теменные борозды отделяют затылочные доли от теменных и височных. Различные области коры взаимодействуют друг с другом посредством прямых связей или с помощью ядер таламуса. Существует хорошо развитая сеть проводящих путей, которые позволяют коре больших полушарий получать сигналы от подкорковых структур и, в свою очередь, передавать им необходимую информацию.

В зависимости от выполняемых функций различные области коры подразделяются на сенсорные, моторные и ассоциативные. К сенсорным областям относятся: соматосенсорная кора, занимающая задние центральные извилины, зрительная кора, находящаяся в затылочных долях и слуховая кора, занимающая часть височных долей. Моторная кора находится в передних центральных извилинах и в примыкающих к этим извилинам регионах лобных долей. Ассоциативная кора занимает всю остальную поверхность мозга и подразделяется на префронтальную кору лобных долей, теменно-височно-затылочную (парието-темпорально-окципитальную) и лимбическую, к которой относят внутренние и нижние поверхности лобных долей, внутренние поверхности затылочных долей и нижние отделы височных долей. Префронтальная кора создаёт планы комплекса моторных действий, теменно-височно-затылочная интегрирует всю сенсорную информацию, а лимбическая участвует в формировании памяти, эмоций и определяет мотивационные аспекты поведения.

 

Резюме

Содержащий огромное количество нейронов мозг человека анатомически и функционально очень чётко организован. Различные популяции нейронов, как и различные регионы мозга решают различные функциональные задачи. Межнейронные связи всегда топографически упорядочены и дублируются, что повышает их надёжность. Все функциональные системы мозга (сенсорные, моторные, мотивационные) постоянно взаимодействуют: на основе этой интеграции создаются самые разные формы поведения. Психические процессы тоже можно рассматривать как комплекс элементарных операций, выполняемых в разных регионах мозга, причём деятельность отдельных регионов постоянно координируется множеством межнейронных связей.

 

ЛЕКЦИЯ № 2. СТРУКТУРНЫЕ И ФУНКЦИОНАЛЬНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ НЕРВНОЙ СИСТЕМЫ

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 257; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.242.191.214 (0.023 с.)