Физические механизмы возбуждения поверхностных акустических волн в твердом теле. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физические механизмы возбуждения поверхностных акустических волн в твердом теле.



Поглощение лазерного излучения в твердом теле и последующая релаксация фотовозбуждения приводят к деформации кристаллической решетки, что проявляется в виде упругих волн распространяющихся из области фотовозбуждения. При этом возбуждение акустических волн в среде возможно за счет различных механизмов. Их можно разделить на два класса - линейный и квадратичный по амплитуде электромагнитного поля. Линейные по полю механизмы - пьезоэлектрический и пьезомагнитный - приводят к возбуждению звука той же частоты, что и электромагнитная волна. При этих механизмах происходит фактически в квазистационарном поле. Поэтому при воздействии лазерного излучения на вещество возбуждение звука происходит за счет квадратично-нелинейных по полю эффектов: электро- и магнитострикции, теплового эффекта и деформационного механизма [1,9]. В этом случае акустические колебания возбуждаются не на частоте световой волны, а на частоте модуляции интенсивности, которая уже попадает в акустический диапазон. Фактически электрострикция может быть существенна только в прозрачных средах и на высоких ультразвуковых частотах. В области звуковых и ультразвуковых частот основным механизмом возбуждения звука является тепловой. Исключения из этого правила возможны в тех случаях, когда поглощенная световая энергия преобразуется в тепловую не сразу либо не полностью. Длительная задержка между моментом поглощения света и моментом, когда поглощенная энергия полностью преобразуется в тепловое движение среды, может реализоваться если энергии оптических квантов достаточно для отрыва валентных электронов от атомов. Это связано с тем, что рождающийся свободный электрон может длительное время не возвращаться в равновесное состояние. Отрыв электронов приводит к изменению сил взаимодействия между атомами. В случае твердых тел это должно повлечь за собой изменение плотности вещества, совершенно не связанное с его нагревом. Такой механизм оптической генерации звука называется деформационным. При использовании лазеров видимого и инфракрасного диапазонов длин волн данный механизм оптико-акустического эффекта может играть важную роль в полупроводниковых материалах. Числовые оценки [11] показывают, что в таких полупроводниках как Ge, Si, GaAs деформационный механизм на порядок эффективнее, чем тепловой. Однако в общем случае насыщение роста концентрации фотовозбужденных носителей может приводить к существенному преобладанию теплового механизма. Уровень оптико-акустического сигнала пропорционален переменной части светового потока. Поскольку лазеры импульсного действия позволяют получать существенно более высокие интенсивности света, чем лазеры непрерывного действия, для лазерной оптоакустики является типичным возбуждение широкого акустического спектра- звуковых видеоимпульсов. В конечном итоге рассмотренные выше механизмы приводят к генерации продольных и поперечных волн. В продольной волне, или волне сжатия-разряжения смещение частиц происходит вдоль волнового вектора. Распространение такой волны сопровождается изменением расстояния между частицами среды и, как следствие, локальным изменением плотности среды. Существование поперечных волн в твердом теле обусловлено деформацией сдвига, т.е. деформацией кристалла без изменения объема. Следует отметить, что для ограниченной среды уравнения движения должны рассматриваться совместно с граничными условиями для механических и электрических величин. В частности, для свободной поверхности граничное условие заключается в отсутствии механических напряжений. Граничным условием для вектора электрической индукции является непрерывность его нормальных составляющих в отсутствии поверхностных зарядов [7].

На поверхности твердого тела могут распространяться акустические волны более сложной структуры. Одной из таких поверхностных волн является волна Рэлея. В простом случае изотропного твердого тела эта волна содержит продольную и поперечную компоненты, сдвинутые по фазе на p/2 и лежащие в плоскости, определяемой волновым вектором и нормалью к поверхности. Таким образом, в общем случае рэлеевская волна является эллиптически поляризованной. Толщина слоя вещества, приводимого в движение волной Рэлея составляет величину порядка длины волны l. Поскольку рэлеевские волны локализованы вблизи поверхности, они очень чувствительны к поверхностным дефектам кристалла.

На поверхности полубесконечной пьезоэлектрической среды возможно распространение поперечной поверхностной волны, поляризованной параллельно поверхности, и с глубиной проникновения тем меньшей, чем сильнее пьезоэлектрические свойства среды. Это так называемые акустоэлектрические волны или волны Гуляева-Блюштейна. По сравнению с рэлеевскими волнами, глубина проникновения волны Гуляева-Блюштейна вглубь образца существенно больше и может превышать величину 100l. Для существования поверхностной акустоэлектрической волны кроме выполнения механических и электрических граничных условий должны быть выполнены условия определенного расположения элементов симметрии кристалла относительно саггитальной плоскости.

 



Поделиться:


Последнее изменение этой страницы: 2017-01-25; просмотров: 161; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.63.145 (0.004 с.)