Законы Ома и Кирхгофа в комплексной форме. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Законы Ома и Кирхгофа в комплексной форме.



 

Введение понятий комплексного сопротивления и комплексной проводимости означает, по-существу, введение закона Ома в комплексной форме для установившегося синусоидального режима

или.

Комплексная амплитуда напряжения на зажимах пассивного двухполюсника равна комплексной амплитуде тока, умноженной на комплексное сопротивление двухполюсника.

 

Пример 1. Через зажимы двухполюсника с комплексным сопротивлением Z=40ej30 Ом протекает синусоидальный ток i =3 Sin (314 t + 15o) A. Определить напряжение u(t) на зажимах двухполюсника.

Решение.

Находя комплексную амплитуду тока и зная комплексное сопротивление двухполюсника, на основании закона Ома в комплексной форме определяем комплексную амплитуду напряжения

Следовательно, мгновенное напряжение равно u=120 Sin (314 t + 45o), B.

Первый закон Кирхгофа в комплексной форме: Сумма комплексных амплитуд токов ветвей, сходящихся в узле равна нулю, т.е.

.

Поскольку каждое слагаемое в представленном выражении есть вектор, то результат есть сумма векторов. Это обстоятельство позволяет контролировать аналитические расчеты наглядными графическими построениями - векторными диаграммами.

Пример 2. В узле электрической цепи сходятся 3 ветви с синусоидальными токам одной частоты (рис.3.3,а).

Мгновенные значения токов i 2 и i 3 определяются выражениями i2= 100 Sin(100t-45o) и i3= 50 Sin(100t+30o). Требуется определить ток i1, пользуясь методом комплексных амплитуд.

 

Решение.

На основании первого закона Кирхгофа в комплексной форме находим

 

, где ,

Тогда

 

Построив вектора токов на комплексной плоскости (рис.3.3,б), убеждаемся, что сумма их действительно равна 0.

 

 

Переходя от комплекса к мгновенному значению, получим i1= 101 Sin(100t-74o), А.

Второй закон Кирхгофа в комплексной форме - в установившемся синусоидальном режиме сумма комплексных амплитуд ЭДС источников напряжений в контуре равна сумме комплексных амплитуд падений напряжений на элементах контура. Если контур содержит N источников напряжений и L пассивных элементов, то математически это положение формулируется следующим образом:

.

Пример 3. Известны мгновенные значения напряжений на элемен-тах контура (рис.3.4,а) u1= 10 Sin(100t-45o) B, u2= 25 Sin(100t+30o)B, u3= 5 Sin(100t+60o)B. Требуется определить мгновенное значение ЭДС источника напряжения.

 

Решение.

На основании второго закона Кирхгофа для мгновенных значений напряжений и ЭДС находим e = u1+ u2+ u3.

Переходя к комплексам, получим

, где

; ;

Следовательно,

=

Построив вектора напряжений на комплексной плоскости (рис.3.4,б) убеждаемся, что сумма их действительно равна вектору ЭДС. Переходя от комплекса к мгновенному значению, получим e = 32.3 Sin(100t+18o), В.

Метод комплексных амплитуд.

Метод комплексных амплитуд — метод расчета линейных радиотехнических цепей, содержащих реактивные элементы, в установившемся режиме при гармонических входных сигналах.

Суть метода заключается в следующем:

1) Для всех реактивных элементов определяется их комплексный импеданс.

2) Все токи и напряжения рассматриваются в виде комплексных амплитуд.

После введения этих замен задача анализа цепи сводится к задаче анализа цепи на постоянном токе:

- импедансы трактуются как обычные сопротивления;

- комплексные амплитуды токов и напряжений как обычные токи и напряжения.

Таким образом, мы избавились от реактивности элементов и зависимости от времени сигналов. Эти факторы, затрудняющие математические операции при описании схемы, теперь перенесены в сигнал: все параметры зависят от частоты гармонического сигнала и являются комплекснозначными.

Задача анализа цепи на постоянном токе решается соответствующими методами, например, методом узловых потенциалов или методом контурных токов. После нахождения всех искомых комплексных амплитуд их можно при необходимости перевести обратно в гармонические сигналы.

Данный метод применяется для расчёта разветвлённых цепей переменного тока, содержащих реактивные сопротивления (конденсаторы и индуктивности). Сопротивления

этих элементов записываются через комплексные числа.

Сопротивление конденсатора будет равно: Zc=j/ωC,

сопротивление индуктивности: ZL=jωL,

где j – мнимая единица вместо i, так как через i обозначается ток,

ω – циклическая частота, которая равна 2πν,

C и L – соответственно ёмкость и индуктивность.

Источник напряжения с учётом фазы обозначается как Ue, где U – действующее напряжение, φ – фаза данного источника.

Если дан источник тока с определённой фазой, то из этой фазы вычитается π/2, чтобы получить фазу данного источника по косинусу, а затем через получившуюся фазу по косинусу данный источник записывается аналогично источнику напряжения: Ie.

Если последовательно резистору включён конденсатор, то их общее сопротивление записывается, как R-jZc, если индуктивность, то общее сопротивление равно R+jZL.

Затем в цепи условно выбираются направления токов, у источников напряжения и тока условно выбираются + и -, и составляются уравнения для расчёта данной цепи лучше всего по правилам Кирхгофа (первое правило Кирхгофа: сумма токов во всех ветвях, сходящихся в данном узле равна нулю; в торое правило Кирхгофа: сумма падений напряжений на всех сопротивлениях равна сумме всех ЭДС в данном контуре) или по методу узловых потенциалов:

1) Закон Ома для участка цепи содержащего ЭДС:

φ1 φ2

φ1 – узел, от которого течёт ток;

φ2 – узел, к которому течёт ток;

V1 – источник, включённый по направлению тока;

V2 – источник, включённый противоположно направлению тока;

R1 – сопротивление ветви.

2) Закон сохранения заряд:

Далее решая эту систему, получим комплексные значения токов в ветвях. Чтобы получить значения токов, которые будут показывать амперметры, нужно просто взять модули этих комплексных токов.

Пример:

Рассчитаем методом комплексных амплитуд с помощью правил Кирхгофа данную цепь.

 



Поделиться:


Последнее изменение этой страницы: 2017-01-25; просмотров: 1206; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.141.6 (0.009 с.)