Тканинний обмін продуктів гідролізу жирів 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тканинний обмін продуктів гідролізу жирів



Окиснення гліцерину

Гліцерин захоплюється переважно печінкою. Тут під дією гліцеролкінази він перетворюється у гліцерофосфат, який окиснюється до діоксіацетонфосфату гліцеролфосфатдегідрогеназою.

Діоксіацетонфосфат – проміжний продукт гідролізу і глюконеогенезу і тому може або окиснюватися в реакціях гліколізу і далі по загальному шляху катаболізму до СО2 і Н2О, даючи при цьому енергію, або вступати у реакції глюконеогенезу, перетворюючись у глюкозу чи глікоген. Окиснення гліцерину в анаеробних умовах приводить до виділення двох молекул АТФ (як і в гліколізі), але враховуючи, що одна молекула АТФ була використана для активації гліцерину, енергетичний баланс рівний одній молекулі АТФ.

При повному окисненні гліцерину в аеробних умовах до СО2 і Н2О енергетичний баланс складає 22 молекули АТФ. Із них 9 АТФ утворюються в дихальному ланцюзі з 3-х молекул НАДН2. Одна молекула НАДН2 – при окисненні гліцерофосфату, друга – з гліцеральдегідтрифосфату, а третя молекула НАДН2 утворюється під час перетворення піровиноградної кислоти в ацетил КоА. Окиснення останнього до СО2 і Н2О супроводжується виділенням 12 АТФ.

Окиснення жирних кислот

У загальних рисах окиснення жирних кислот відбувається таким чином. Жирні кислоти надходять у клітини, перетворюються в активні форми – ацил-КоА, тобто сполуку залишку жирної кислоти (ацилу) з коензимом А. За допомогою спеціального переносника – карнітину – ацильні групи проникають із цитоплазми в мітохондрії.

Тут жирні кислоти зазнають ряду послідовних реакцій, які призводять до відщеплення від довгого вуглецевого ланцюга фрагмента із двох вуглеців, а саме ацетил-КоА. Багаторазове повторення таких реакцій призводить до ­повного ­розпаду жирної кислоти до ацетил-КоА. Останній утилізується у циклі лимонної кислоти.

Ще на початку ХХ століття Кнооп показав, що відщеплення дво­вуглецевих фрагментів відбувається за бета-схемою, коли окиснюється бета‑атом вуглецю жирної кислоти і в результаті утворюються бета-кетокислота, яка далі зазнає розщеплення з утворенням двовуглецевого фрагмента (напевно, оцтової кислоти) і жирної кислоти, коротшої на 2 атоми вуглецю за вихідну кислоту. Тому Кнооп назвав цей процес бета-окисненням жирних кислот.

А. Реакція активації жирних кислот під дією ацил-КоА-синтетаз і за рахунок використання енергії АТФ:

Цей процес відбувається в цитоплазмі. Відомо декілька ферментів, локалізованих у зовнішній мембрані мітохондрій і в ендоплазматичній сітці, які специфічні для жирних кислот із різною довжиною вуглеводневого ланцюга.

Б. Перенесення ацильних залишків із цитозолю у матрикс мітохондрій, де локалізовані ферменти бета-окиснення. Цей процес здійснюється за допомогою низькомолекулярного карнітину:

Фермент карнітин-ацилтрансфераза каталізує реакцію утворення складного ефіру карнітину і жирної кислоти, а мембранний білок транслоказа сприяє переносу ацилкарнітину через внутрішню мембрану мітохондрій у матрикс:

Під дією мітохондріальної карнітин-ацилтрансферази із ацилкарнітину утворюються ацил-КоА і вільний карнітин, який повертається у цитозоль, а ацил-КоА потрапляє в матрикс.

В. Реакція бета-окиснення.

1. Дегідрування по альфа- і бета-вуглецевих атомах жирної кислоти за допомогою ФАД-залежної ацил-КоА-дегідрогенази:

2. Гідратація еноїл-КоА; фермент еноїл-КоА-гідратаза.

3. Друга реакція дегідрування; фермент – НАД+-залежна бета-оксіацил-КоА-дегідрогеназа.

4. Тіолазна реакція; фермент – тіолаза, або ацетил-КоА-ацилтранс­фераза.

Ці чотири реакції складають один цикл бета-окиснення. Ацил-КоА, який став на два атоми вуглецю коротшим, знову вступає у цикл бета-окиснення з наступним відщепленням ацетил-КоА. Так повторюється до повного розпаду жирної кислоти на ацетил-КоА. Наприклад, при бета-окисненні пальмі­тинової кислоти (С15Н31СООН, число атомів вуглецю n=16) ­утворюються 8 молекул ацетил-КоА (n/2) і мають місце 7 циклів (n/2-1), тому що ацил із 4 атомів вуглецю (бутирил-КоА) окиснюється і розпадається до двох молекул ацетил-КоА. Сумарне рівняння для пальмітинової кислоти таке:

Енергетичний баланс окиснення жирних кислот

Відновлені коферменти передають атоми водню на дихальний ланцюг, де за рахунок окиснювального фосфорилювання утворюються АТФ (1 ФАДН2 – 2 АТФ, 1 НАДН2 – 3 АТФ). Оскільки при кожному циклі утворюються 1 ФАДН2 і 1 НАДН2, а при розпаді пальмітинової кислоти відбуваються 7 циклів, то утворюється 7×5=35 молекул АТФ. На другому етапі окиснення всі молекули ацетил-КоА окиснюються у циклі лимонної кислоти і ацетил-КоА дає при цьому 12 молекул АТФ. При розпа­ді пальмітинової кислоти утворюються 8 ацетил-КоА, що забезпечують синтез 8 ×12=96 молекул АТФ. Звідси вихід АТФ при повному окисненні 1 молекули пальмітинової кислоти до СО2 і Н2О складе 96+35-1 (для активації)=130 молекул.

При повному окисненні 1 моля пальмітинової кислоти в калориметричній бомбі звільняється близько 9800 кДж. У 130 молях АТФ акумулюється 130×40=5200 кДж, що складає близько 55 % всієї енергії, а решта розсіюється у вигляді тепла.

Окиснення ненасичених жирних кислот

Механізм окиснення такий же, як при окисненні насичених кислот, але процес включає додаткові реакції. Поступове відщеплення ацетил‑КоА від ненасиченої жирної кислоти призводить до утворення ­еноїл­‑КоА, в якому подвійний зв'язок розміщений у положенні між 3 і 4 атомами вуглецю і має цис-конфігурацію. Еноїл-КоА, який утворюється при окисненні насичених жирних кислот, як розглянуто вище, має подвій­ний зв'язок між 2(альфа) і 3(бета) атомами вуглецю, причому у транс-конфігурації. Існує специфічна ізомераза, яка переміщає подвійний зв'язок із положення 3‑4 у положення 2-3, а також змінює конфігурацію подвій­ного зв'язку із цис- у транс-конфігурацію. Утворений еноїл-КоА перетворюється далі шляхом бета-окиснення.

Обмін кетонових тіл

До кетонових тіл відносять ацетооцтову кислоту (ацетоацетат), бета оксимасляну кислоту (бета-оксибутират) і ацетон. Синтезуються вони в печінці із ацетил-КоА. Останній утворюється при розпаді вуглеводів, жирних кислот і амінокислот, але переважно для синтезу кетонових тіл використовується ацетил-КоА, що утворюється із жирних кислот. Ацетоацетат і бета-оксибутарат надходять із печінки у кров і транспортуються як водорозчинні сполуки до позапечінкових тканин. Там бета-оксибутарат окиснюється до ацетоацетату, який перетворюється в активну форму – ацетоацетил-КоА. У тканинах є 2 шляхи активації ацетоацетату. У першому ацетоацетат перетворюється в ацетоацетил-КоА в реакції з сукциніл-КоА. У другому шляху ацетоацетил-КоА утворюється в реакції з КоА при участі АТФ та ферменту ацетоацетил КоА-синтетази.

У нормі в печінці утворюється невелика кількість кетонових тіл, які дифундують у кров і швидко утилізуються периферичними тканинами. Концентрація кетонових тіл у крові – не більше 30 мг/л. Окиснення кетонових тіл відбувається у серцевому і скелетних м'язах, нирках і навіть, при тривалому голодуванні, у мозку. Таким чином, біологічний зміст утворення кетонових тіл полягає в тому, що частина ацетил-КоА, який утворюється при бета-окисненні жирних кислот у печінці, не окиснюється тут, а направляється у формі кетонових тіл в інші органи і тканини як додаткове джерело енергії. Знову, як і у випадку з глюкозою, печінка служить органом, що постачає в інші тканини й органи клітинне паливо.

Вміст кетонових тіл у крові в біля 10-20 мг/л. При голодування і цукровому діабеті їх рівень різко підвищується (кетонемія). Збільшується їх виділення з сечею (кетонурія). Причиною кетонемії є зменшення утилізації ацетил-КоА в ЦТК при порушенні вуглеводного обміну. Входження ацетил-КоА в ЦТК потребує оксалоацетату, який синтезується з пірувату, а основним постачальником його є гліколіз. При зменшенні в клітині глюкози оксалоацетат використовується на глюконеогенез, а ацетил-КоА - на кетогенез. Сприяє накопиченню ацетил-КоА і стимуляція ліполізу в жировій тканині. Ці закономірності пояснюють давній вислів "Жири згоряють у полум'ї вуглеводів". При відсутності лікування концентрація ацетонових тіл у хворих на цукровий діабет зростає в десятки разів, супроводжуючись зміщенням реакції в кислу сторону, небезпечним для головного мозку.

Кетоацидо́з — це патологічний стан організму, при якому спостерігається висока концентрація кетонових тіл, що формуються внаслідок активного розщеплення жирних кислот та дезамінуванням амінокислот. При кетоацидозі утворюються переважно ацетоацетонова кислота та β-гідоксибутират.



Поделиться:


Последнее изменение этой страницы: 2017-01-25; просмотров: 94; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.104.238 (0.007 с.)