Ферменты. Строение, структура. Понятие апоферментов, кофакторов, коферментов. Механизм ферментативного катализа. Основные пути регуляции активности ферментов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ферменты. Строение, структура. Понятие апоферментов, кофакторов, коферментов. Механизм ферментативного катализа. Основные пути регуляции активности ферментов.



Ферменты. Строение, структура. Понятие апоферментов, кофакторов, коферментов. Механизм ферментативного катализа. Основные пути регуляции активности ферментов.

Ферменты (энзимы) – высокоспециализированный класс веществ белковой природы, используемых живыми организмами для осуществления многих тысяч взаимосвязанных хим. реакций, включая синтез, распад и взаимопревращение огромного множества и разнообразия хим. соединений.

Строение: ферменты – простые и сложные белки. Простые: полипептидные цепи (при гидролизе распадаются только на АК). Сложные: полипептидные цепи (апофермент для связывания) - небелковый комп-нт (каталитическая часть – витамин и перех-ме). Активный центр – уникальная комбинация аминокислотных остатков в молекуле фермента, обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа (каталитический участок и «контактная площадка»).Апоферменты: полипептидная часть фермента.

Кофермент: дополнительная группа, легко отделяемая от апофермента (в соединениях небелковой природы). Кофактор: (в ионах Ме стабилизаторы молекулы субстрата).

Механизм ферментативного катализа: ферменты эффективны и проявляют высокую каталитическую активность в условиях умеренной t (тела), норм. давления и в области близких к нейтральным значениям РН среды.

Каждый фермент катализирует одну реакцию. Каждому ферменту характерны специфичная последовательность расположения аминокислотных остатков и пространственная конфигурация. Ферментная активность в клетках строго контролируется на генетическом уровне.

Основные пути регуляции активности ферментов. Активность ферментов в клетке зависит от количества молекул субстрата, продукта, наличия кофакторов и коферментов. Действие ферментов в клетке, как правило, строго упорядочено: продукт одной ферментативной реакции является субстратом другой, образуя т. о. «метаболические пути». Различают ферменты: ключевые (регуляторные) – в начале или в месте разветвления метаболического пути.

 

2.Общая схема метаболизма глюкозы. Глюкоза крови. Неэнзиматич-я гликация. Цикл Кори Печень Кровь Мышцы Гликоген Глюкоза ГЛЮ ГЛЮ гликоген

Неэнзимотич-я гликация и ее значение – связывание глюкозы с лизином белков и тканей, нарушается структура и функции белков.

 

Стадия катаболизма органических в-в. Центральная роль ацетил КоА в метаболизме орг-их в-в.

Катаболизм – пр-сс расщепления органич. мол-л до конечных прод-в. Конечные пр-ты превращений орг-их в-в у жив-ых и чел-ка – СО2, Н2О и мочевина. В пр-сы катаболизма включаютсяся метаболиты, образ-ся как при пищеварении, так и при распаде структурно-функциональных компонентов Кл-к.Р-и катаболизма сопровождаются выд-м Е (экзергонические р-ции).Метаболизм включает 2 пр-са: катаболизм и анаболизм (биосинтетические пр-сы, в кот-х строительные белки соед-ся в сложн. макромолекулы необходимые д\ орг-зма, использ-ся Е).КоА – из вит. В3 ->пантотеновая кислота ->переносит из нее КоА и актив-т кислотн. остатки (ацилы), в рез-те образ-ся ацил КоА происх-т активация карбоновой кислоты. Стр-ие: реакционный центр – SH – группа (SH – КоА). Непосредственное участие в основных биохим. проц-ах.Ацетил КоА образ-ся в специфич. р-ях катаболизма ЖК и нек-х АК. Однако главный источник – пировироградная к-та, образующаяся в р-ях катаболизма глюкозы и нек-х АК.

Превращение пируват->ацетил КоА при участии набора ферментов, структурно объединенных в пируватдегидрогеназный комплекс (ПДК). Ацетильный остаток – ацетил КоА окисляется в цикле лимонной к-ты до СО2 и Н2О. В этих реакциях окисления принимают уч-ие НАД и ФАД – зависимые дегидрогеназы перед. Е и протоны в ЦПZ-> О2.

 

Белки плазмы крови

Плазма крови состоит на 90-92% из воды, а 8-10% приходится на сухой остаток.

Общее количество белка составляет 7-8%, остальное приходится на долю других органических соединений и минеральных солей. Белки плазмы крови/65-85 г/л/:

а) альбумины - 4,5% синтез-ся в печени,прод-сть жизни 19 сут.норма 37-55г\л 1.Поддерживают онкотическое давление2.Источнтк аминокислот/питательная функция/3.Обеспечивает коллоидное состояние крови4.Адсорбция и транспорт экзо и эндогенных веществ/участие в защитной, питательной и экскреторной функции/ Альб.повышен присост-х с гипогидратацией(рвота,ожоги,диарея) б) глобулин - 2-3% альфа-глобулины в их состав входят: альфа-липопротеид-тр-рт липидов и жирораств.витаминов;протромбин –фактор свёртывания;тиреоид –связ-т глобулин, тр-рт гормонов щитовидн.ж-зы;альфа 1-антитрипсин-нейтр-т протелитич.ферменнты(трипсин,плазмин),лейкоцитарные протеазы(освоб-е при лизисе лейкоц.);кислый альфа 1-гликопротеин:тр-рт прогестерона и тестостерона альфа2-глобулины:альфа2-макроглоб.:нейтр-т протеолитич.ферм-ты,тр-ет ф-ты и гормоны; эритропоэтин:эритропоэз;гаптоглобин:связ-т своб.Нв(при лизисе эритроц.) и тр-ет в РЭС;

Бета-глобулины - в основном представлены: Трансферин- тр-рт Fe2+ и Fe3+(1 мол-ла-2иона), В-липопротеиды(ЛПНП)-тр-рт липид,гармонов и жирораств.вит-в. липопротеидами Гамма-глобулины - это иммуноглобулины/антитела/ сост-т из тяжелых и легих цепей:Jg G,A,M,D,E.

в) фибриноген - 0,2-0,4%

 

63. Низкомолекул-е вещ-ва плазмы крови:

азотсодержащие:1 аминокислоты- продукты распада белков. 2 мочевина, синтез печени(при отс-ии повышенного содерж-я в крови и тканях аммиака и аминокислот, цинкл Кребса-Гензелейта. 3Мочевая к-та –основные прод-ты катабализма пуриновых нуклеотидов.
В сыворотке крови 0.15-0.4 м\моль на литр ежесут-о из орган-а вывод-я 0.4-0.6 гр. При повыш-и концентрауии – подагра(отложение мочевых камней в хрящах и подкожной клетчатке)

 

64. Лейкоциты - самый малочисленный отряд среди форменных элементов крови. Их количество не превышает в норме 4-9 тыс./мм3. Основная функция, которую они выполняют в организме - защитная. С помощью лейкоцитов обеспечивается мощный тканевой и кровяной барьеры против микробной, вирусной и паразитарной инфекции. Морфологической особенностью лейкоцитов, отличающей их от других форменных элементов крови, является наличие ядра, различного по размерам и степени дифференцировки у разных видов.

В зависимости от наличия или отсутствия специфической зернистости в цитоплазме, лейкоциты делятся на 2 группы: гранулоциты и агранулоциты.

Гранулоциты в свою очередь подразделяются на виды в зависимости от чувствительности гранул к кислым либо основным красителям:а) базофилы б) эозинофилы в) нейтрофилы.

В зависимости от зрелости последние подразделяются на:а) метамиелоциты, или юные нейтрофилы, б) палочкоядерные

в) сегментоядерные (по степени дифференцировки ядра).

Агранулоциты: а) лимфоциты б) моноциты Время жизни большинства лейкоцитов невелико: от нескольких часов до нескольких суток. Исключение составляют клетки иммунной памяти, которые могут сохраняться в организме без митоза до 10 и более лет (этим определяется продолжительность специфического иммунитета). Все зрелые лейкоциты в организме могут находиться в следующих состояниях:

1. Лейкоциты циркулирующей крови.

2. Секвестрированные лейкоциты (находятся в кровеносном русле, но не переносятся с кровотоком; располагаются у стенки сосудов или в закрытых сосудах - переходная форма).

3. Тканевые (за пределами сосудистого русла), основное состояние лейкоцитов

 

65. Эритроциты - красные кровяные тельца. Имеют форму двояковогнутого диска.

Функции эритроцитов: 1. Дыхательная - транспорт кислорода и участие в транспорте углекислого газа.2. Адсорбция и транспорт питательных веществ.3. Адсорбция и транспорт токсинов.4. Регуляция ионного состава плазмы крови.5. Формирует реологические характеристики крови/вязкость и т.д./ Эритрон - часть системы крови, обеспечивающая поддержание постоянства количества эритроцитов. В эритрон входят:а) эритороидный ряд красного косного мозга

б) ретикулоциты и эритроциты в) органы разрушения эритроцитовг) продукты распадаэритроцитовд)Эритропоэтины/вырабатываются почками, печенью, а также продукты распада эритроцитов/ Эритрокинетика - это процессы, направленные на образование и разрушение эритроцитов. Продолжительность жизни эритроцитов - 120 дней.Регуляция эритрокинетики осуществляется преимущественно гуморальным путем. Стимуляторы образования и созревания эритроцитов (эритропоэза) - эритропоэтины (специфический стимулятор), глюкокортикоиды. Противоположным действием на эритропоэз влияют женские половые гормоны - эстрогены. Количество эритроцитов: у мужчин 4,5-5,0 млн. в 1 мм3, 4,5-5,0*1012/л; у женщин 4,0-4,5 млн. в 1 мм3,4,0-4,5*1012/л. Эритроцитоз - увеличение содержания эритроцитов. Эритропения –снижение содержания эритроцитов, это состояние может еще обозначатся термином "анемия". Возможны истинные и ложные изменения количества эритроцитов. Истинные - изменения во всем организме. Ложные - изменения за счет изменения объема плазмы крови.

Размеры эритроцитов: 6-8 микрон - нормоцит; менее 6 микрон - микроцит; 8-10 микрон - макроцит; более 10 микрон - мегалоцит. Тромбоциты Как лейкоциты выполняют в основном защитную функцию, так тромбоци­ты прежде всего участвуют в свертывании крови. Тромбоциты - "кровяные пластинки", безъядерные клетки крови, имеют двояковыпуклую форму.

Размер - 0,5 - 4 мкм (самые мелкие клетки крови).В норме в 1 мм3 крови - 200.000 - 400.000 штук тромбоцитов.

­ - тромбоцитоз. ¯ - тромбоцитопения,

М.б. и при нормальном содержании тромбоцитов в крови наблюдаться патология со стороны функций тромбоцитов - при тромбоцитопатиях.

Продолжительность жизни - 8-12 дней.

Образуются в красном костном мозге из мегакариоцитов (тромбоцитопоэз). Функции тромбоцитов: 1. Ангиотрофическая - ежедневно поглощается 35.000 тромбоцитов из 1 мм3 крови за сутки (» 15 % всех циркулирующих тромбоцитов).

После глубокой тромбоцитопении через 30 минут 85-90% всех тромбоци­тов оказывается в эндотелии. Т.о. сам эндотелий не может поглощать вещества из плазмы (тромбоциты смыкаются с эндотелием и изливают в них свое содержимое).Исходя из этого, при тромбоцитопениях наблюдается дистрофия эндоте­лия (пропускает эритроциты (диапедез), петехии (синяки, точечные кровоизлияния).2. Участие в регенерации сосудистой стенки (стимулируют размножение эндотелиальных и гладкомышечных клеток, синтез волокон коллагена).3. Способность поддерживать спазм поврежденных сосудов (высвобождают серотонин, катехоламины, тромбомодулин, тромбоксан).4. Участие тромбоцитарных факторов в процессах свертывания крови и фибринолиза. 5. Адгезивно-агрегационная функция (образование первичной тромбоци­тарной пробки).1. Адгезия (прилипание активированых тромбоцитов к чужеродной поверхности). Наиболее важные стимуляторы адгезии - волокна коллагена ("+" заряженные группировки), а также кофактор адгезии - ф. Виллебранда.

2. Агрегация - слияние тромбоцитов в однородную массу, формирование гомогенного тромбоцитарного тромба за счет переплетения псевдоподий.

3. Реакция высвобождения (дегрануляция индукторов агрегации и веществ, поддерживающих спазм сосудов (АДФ, сератонин, тромбин, адреналин, тромбо­ксан А2 (мощный стимулятор агрегации и ангиоспазма)), а также тромбоцитар­ных факторов свертывания (их 16, обозначаются арабскими цифрами).

4. Ретракция сгустка - (т.к. тромбоцит в псевдоподиях содержит белки, подобные актину и миозину. При взаимодействии с Са+2 - происходит сокраще­ние, в результате чего сгусток уменьшается в объеме, уплотняется. При этом ближе стягиваются и поврежденные ткани, что способствует скорейшей регенерации тканей).

 

66.Гемостаз- система останавливающ. Кровотечение и сохран. Жидкое сост. Крови. Факторы:1.Фибриноген-синтезируется в печени содерж. В плазме крови. Из него образ. Фибрин. В его нитя запут. Ферментативные элем. Крови, образ. Тромб. 2.Тканевой-образ. При поврежд. Ткани запускает внешний путь сверт. Крови. 3. Протрамбин- из него образ. Трамбин. Он вызывает наслаивание тромбоцитов. Участ. В пролиферации клеток и их репорации. 4. Фактор7-соедиинение внешнего и внутр. Пути сверт. Крови.

Роль печени в углеводном обмене. 1) уникальная ф-ция печени – гликогенная, синтез гликогена, а при гипогликемии поступ-ие Глю в кровь 2) печень превращает поступивш.моносахариды (фруктозу и галактозу) в Глю 3) Глюконеогез-синтез Глю из неуглевод.компонентов

В печени обмен гликогена отличается рядом особенностей. Здесь главное значение регуляции б- синтеза и распада гликогена заключается в поддержании постоянной концентрации глюкозы в крови 3,5-5,5 Ммоль/л.Во время пищеварения концентрация может повышаться. Основной источник глюкозы в крови явл. –ся во время пищеварения служит глюкозе пищей, в постабсорбтивном состоянии – гликоген печени и глюконеогелез в печени и почках. В печень поступает кровь воротной вены, содерж. Продукты переваривания пищи, в т.ч. глюкозу. Существенная часть глюкозы задерживается в печени. Это обеспечивается, во-первых тем, что глюкоза при такой концентрации (10 ММоль/л) непосредственно дефосфалирует гликоин в фосффилазы и гликогеносинтетазы печени. В результате усиливается синтез и одновременно подавляется распад гликогенов.Обеспеч. Постоян. Канц. Глюкозы в крови. Регуляция синтеза и распада гликогена депонируемого в печени из глюкозы. Синтез гликогена и глюкозы (времен. Резерв Углев. Для поддеж. Канц. В крови). Глюкокиназа, катализирует фосфорилирование глюкозы(обр.-ся глюкоза – 6 –фосфат). – утилизация гл. после приема пищи глюкоза в воротн. Вене резко везрастает. Увеличение акт.-ти глюкокиназы и увелич. Поглащения печенью. Глюкоза-6-фосфат. Либо на синтез гликогена, либо расщепл.-ся. Расщепл. глюкозы – запасом метаболитов – прешеств. для биосинтеза ЖК и глицерина. Ок.-е до СО2 и Н2О (мало). Триглицириды выдел.-ся в кровь в составе липопротеидов и транспорт.-ся в жиров. Ткань для хранения.Пентозофосфатный путь: обр. НАДФ Н2 (для восст. р-й в процессе синтеза Ж.К.) и для синтеза нуклеиновых кислот.Обр.-е глюкозы; распад гликогена; гликоногенез. Соотнош. м/д утилиз. и образ. глюкозы регулир. нейрогуморальной внут. секр иглюкозо-6-фосфат расщепл. и с током крови поступает в органы и ткани Фруктоза в печени- фруктоза-6-фосфат.

 

76. Роль печени в липидном и белковом обмене Системы печени способны катализировать все или подавляющее большинство реакций метаболизма липидов. Совокупность этих реакций лежит в основе процесса: синтез ЖК, триглициридов, фосфалипидов, холестирина и его эфиров, а также липолиз триглециридов, ок.-е ЖК, обр-е ацетоновых (кетоновых) тел и т.д.

Фермент-е р-я синтеза триглициридов в печени и жир. ткани сходны.

КоА – производ ж.к. взаимод. с глицерол 3 фосфатом с образ. фосфатидн. к-ты, к-я гидролиз.-ся до диглицирида + еще КоА обр.-ся триглицерин к-й либо остается в печени, либо в кровь в форме липопротеидов. ЛПНП (β-минаполипрот.) обр. в плорме из АПОНП. При высоком содерж ЖК в плазме их поглащ печенью возрастает, усиливается синтез триглицеридов, а также ок-е ЖК, что может привести к новым обр-ю кетоновых тел. Из печени нет. тела – ткани, органы, где они быстро ок.-ся при ферментах. В сомой ткани не ок.-ся.В печени происходит интенсивный распад и синтез фосфолипидов.При недостатке холина в печени, синтез фосфолипидов становтися либо невозможным либо снижается и нейтр. жир отлагается в печени (жиров инфильтрация).

Холестирин (стероид) часть поступает из пищи, но большая часть синтезир-ся в печени из ацетил КоА.

Биосинтез холестирина рег-ся по принципу отрицания обратной связи.

 

77.Роль печени в белковом обене. 1)синтез белков из АК поступ-х из воротной вены(собств.бел,бел.плазмы крови)Только в печени синтз-ся фибриноген,протромбин,проконвертин,проакцелирин. 2)Кл.Куфера синт-ся гамма-глобулины,в Кл. печени синт-ся все альбумины плазмы крови 3)катаболизм белков-мочевинообразование.

Ф.и.: синтез специфич белков плазмы, обр.-е мочевины и мочевой к-та; синтез холина и креатина;переаминиров-е и дезаминиров-е ам. к.-т. ежедневно 13-18 т альбуминов синт.-ся 75-90% α-глобул., 50% β-глобул. Синт.-ся гепотоцитами, γ-глоб синтез.-ся ретикулоендателиальной системой (купферовские клетки печени) рет. В основании γ-глоб.-шит вне печени. Только в печени синтез протрометин, фибриноген, проконвертин и ппроскулерин. При повреждении печени нарушается процесс дезаминиров.-я ам.-т, приводит к их увеличению в крови и моче.

В ПЕЧЕНИ ОБР.-Е мочевины связан с затратой Е (1 моль – 3 моль). При забол.-и печени АТФ снижается и синтез мочевины нарушен.

Азот мочевины к аминоазатц- 2:1; при поражении печени 1:1.

Ф.-ции:1. синтез специфических белков плазмы (альбумин, глобулин), d-альбуминов – 75-90%, β-глобулинов-50%; протромбин, фибриноген, проконвертин.

2. дезаминирование и трансоминирование AЕ

3. обр.-е мочевой к.-т.

Кипоксантин и ксантин – мочевая кислота (ксантиноксисаза)

1.синтез креатин – мышечная ткань – креатинфосфат – креатинин.

2.обр.-е котиновых тел (энергетич. Баланс, топливо для мышц, почек; печень их не использует в качестве энергоматериалов.

3.образование мочевины орнитиновый цикл гепатоцитов

 

78.Роль печени в обмене гормонов,вит-в и комп-в желчи. В обм.вит.1)в печени осущ-ся актив-ция вит.(обр-ся коферментн.формы) 2)в печени нах-ся многие жирораствор.вит.(А,Д,К) Желчь-Н2О,соли,желч.к-ты,фосфолипиды,ХЛ,билир-н.

 

79. Роль печени в детоксикации чужеродных соединений

Печень участвует в различных видах обмена веществ: углеводном, липидном, белковом. Но самой важной и главной функцией является детоксикация.

Детоксикации подвергаются все чужеродные вещества, поступающие из ЖКТ и образующиеся в организме, а также некоторые сигнальные молекулы (гормоны, гистамин, пептиды).

Детоксикация ксенобиотоков (чужеродные вещества, поступающие извне) осуществляется с помощбю процессов свободно-радикального окисления.

В первой фазе чаще всего вещество подвергается гидроксилированию.

Во второй фазе – стадия коньюгирования (присоединение определенного вещества).

Процесс гидроксилирования протекает следующим образом: необходимо, чтобы образовалась ОН - группа, для этого необходимо разорвать СН-СН-связь, это осуществляется за счет супероксида О2.

Обезвреживание веществ заключается в их химич модификации, к.-я обычно включает 2 фазы. В 1-й фазе: ок-е восст.-е или гидролиз, в рез-те образ-ся группы-ОН-НООН-SH-NH2 и некоторые др. во 2-й фазе присоед-ся в-во: гмокуроновая к-та. Серная к-та, глицин, ацетильный остаток (р-я коньюгации).В 1-й фазе обезвреж-е микросом-е гидроксилаза (монооксигеназы). Основн. Компонент цитохром Р 450.- хар-ся субстратной специфичьностью.Наиболее распростр.-я р.-я коньюгации – присоед. гмонуроновой к-ты с обр.-ем гмонуронида.

При р.-и ок-я и коньюгации на мол.-х обезвреживаемых в-в обр-ся гидрофильные группы, в-во в целомстанов-ся более растворимым в воде, что облегчает его выведение из орг.-ма. Кроме того, хим модификация токсичных в-в, как правило снижает их токсичность.

 

80. Механизм детоксикации ксенобиотиков в печени. Реакции коньюгации. Обезвреживание веществ заключается в их хим. Модификации, проходящей в 2 фазы: 1. Окисление, восстановление или гидролиз (в результате чего образуются группы ОН, СООН,

SH, NH2. 2. К этим группам присоед. К-либо вещ-во (глюкуроновая кислота, серная кислота, глицин, глуиамин, ацитильный остаток) Это реакция коньюгации. Наиб. распростран. Реакц. Коньюгации – присоединение глюкуроновой кислоты с образованием глюкоронида.

При реакциях окисления и коньюгации на молекулах обезвреживаемых вещ-в образуются гидрофильные группы и вещ-во становится б. растворимым в воде, что облегчает его выведение из организма, также снижается их токсичность.

 

Ферменты. Строение, структура. Понятие апоферментов, кофакторов, коферментов. Механизм ферментативного катализа. Основные пути регуляции активности ферментов.

Ферменты (энзимы) – высокоспециализированный класс веществ белковой природы, используемых живыми организмами для осуществления многих тысяч взаимосвязанных хим. реакций, включая синтез, распад и взаимопревращение огромного множества и разнообразия хим. соединений.

Строение: ферменты – простые и сложные белки. Простые: полипептидные цепи (при гидролизе распадаются только на АК). Сложные: полипептидные цепи (апофермент для связывания) - небелковый комп-нт (каталитическая часть – витамин и перех-ме). Активный центр – уникальная комбинация аминокислотных остатков в молекуле фермента, обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа (каталитический участок и «контактная площадка»).Апоферменты: полипептидная часть фермента.

Кофермент: дополнительная группа, легко отделяемая от апофермента (в соединениях небелковой природы). Кофактор: (в ионах Ме стабилизаторы молекулы субстрата).

Механизм ферментативного катализа: ферменты эффективны и проявляют высокую каталитическую активность в условиях умеренной t (тела), норм. давления и в области близких к нейтральным значениям РН среды.

Каждый фермент катализирует одну реакцию. Каждому ферменту характерны специфичная последовательность расположения аминокислотных остатков и пространственная конфигурация. Ферментная активность в клетках строго контролируется на генетическом уровне.

Основные пути регуляции активности ферментов. Активность ферментов в клетке зависит от количества молекул субстрата, продукта, наличия кофакторов и коферментов. Действие ферментов в клетке, как правило, строго упорядочено: продукт одной ферментативной реакции является субстратом другой, образуя т. о. «метаболические пути». Различают ферменты: ключевые (регуляторные) – в начале или в месте разветвления метаболического пути.

 

2.Общая схема метаболизма глюкозы. Глюкоза крови. Неэнзиматич-я гликация. Цикл Кори Печень Кровь Мышцы Гликоген Глюкоза ГЛЮ ГЛЮ гликоген

Неэнзимотич-я гликация и ее значение – связывание глюкозы с лизином белков и тканей, нарушается структура и функции белков.

 



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 136; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.221.113 (0.063 с.)