Основные этапы биосинтеза белка. Роль нуклеиновых кислот, активация амк, рабочий цикл рибосомы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные этапы биосинтеза белка. Роль нуклеиновых кислот, активация амк, рабочий цикл рибосомы.



Репликация, транскрипция, трансляция

Репликация – биосинтез ДНК, по полуконсервативному типу

3 этапа:

1) инициация:

-подготовка матер.цепи к репликации

-обр-ие репл.вилки

-сборка праймосома

-синтез праймера

Топоизомераза – расспирализовывает 3ую стр.

Хеликаза – 2ую, разрывая водор.связи, исп Е АТФ

В ориджинах начинается репликация.

Праймосома = хеликаза+праймаза+SSB-белки(препятствуют респиралиации, защищают от сшивок)

РНК-затравки синт.РНК-полимераза.Роль праймера: акт.ДНК-полимеразу. Для ведущей цепи 1 праймер, для отстающей – много. Синтез Днк всегда начинается с РНК- затравки. Праймеры акт. ДНК-полимеразу, они антипараллельны и комплиментарны цепям ДНК.

2) элонгация – удлинение дочерних цепей.Всегда растет 3конец. Субстраты-dАТФ, dГТФ. С помощью ДНК-полимераз, проверяется 2ды комплиментарность нуклеотида.

3) терминация - остановка. 2 молекулы ДНК, точные копии материнской

Транскрипция – синтез РНК на матрице ДНК, консервативный.

4 этапа:1)связывание РНК-полимеразы с ДНК

2)инициация 3)элонгация 4)терминация

Трансляция – перевод первичной структуры мРНК в амк-последовательность белка.Перевод основан на генетическом коде. Синтез в цитозоле кл. на рибосоме

1) инициация:

1.активация АМК:

R-СН(NH2)COOH +АТФ → R-СН(NH2)CO~ОАМФ (аминоациладенилат)

R-СН(NH2)CO~ОАМФ + тРНК → R-СН(NH2)CO~ тРНК(аминоацил- тРНК),Ф:кодаза

2.связывание АМК с тРНК сложноэфирной связью. Узнавание своей АМК с помощью АРС-азы – имеет высокую субстратную специфичность

3.Самосборка рибосомы. В малой субъединице – иниц.белки мРНК, иниц.аминоацилРНК,3 белк. фактора. Малая субъединица двигается по мРНК, пока не дойдет до старт-кодонов АУГ,ГУГ, к старт-кодону своим антикодоном присоединяется большая тРНК. Устанавливается рамка считывания. Затем присоединяется большая субъединица, затрачивается ГТФ. Инициаторный аминоацил-тРНК всегда в П-центре. Теперь рибосома готова. В А-участке триплет свободен, К нему присоединяется тРНК.

2) элонгация – образование пептидной связи, удлинение цепи

Рабочий цикл рибосомы идет в 3 этапа: 1)связывание аминоацил-тРНК в А-уч.(ГТФ, фактор элонгации)

2)образование пептидной связи (пептидил-ГФ), 3)транслокация (ГТФ, фактор элонгации)

Продолжается до тех пор, пока не кончатся АМК в белке, затр. 4 макроэрг.связи

3) терминация – происходит, когда в А-уч. оказывается стоп-кодон+релизинг-факторы (факторы терминации). Активация в Е-уч. эстеразы (расщепление эфирной связи).

 

2. Гетерополисахариды (классы гликозаминокликанов). Строение, распространение в организме. Биологическая роль.

ГАГи – гликозаминогликаны, линейные гетерополисахариды регулярного строения.

1) гиалуроновая кислота - состоит из дисахаридов N-ацетилглюкозамина и глюкуроновой кислоты.

-самая большая М масса из ГАГов, самая бол.вязкость, смазка и амортизатор суставов, удерживает воду, образует цемент, регулирует проницаемость тк., задерживает микробы.

В коже, стекловидном теле, хрящах.

2),3) хондроитин-4 и 6-сульфаты состоят из глюкуроновой кислоты и N-ацетилгалактозамин-4 и 6-сульфата

- самые распространённые гаги в организме; они содержатся в хряще, коже, сухожилиях, связках, артериях, роговице глаза. Хондроитинсульфаты являются важным составным компонентом агрекана - основного протеогликана хрящевого матрикса. В организме человека встречаются 2 вида хондроитинсульфатов: хондроитин-4-сульфат и хондроитин-6-сульфат. Они построены одинаковым образом, отличие касается только положения сульфатной группы в молекуле N-ацетилгалактозамина

4) кератансульфат состоит из галактозы и N-ацетилгалактозамин

В роговице, в хряще

5) дерматансульфат состоит из идуроновой кислоты и N-ацетилгалактозаминсульфата.

- обладает антикоагулянтными свойствами, имеют высокое сродство с липопротеинами низкой плотности.

Характерен для кожи, кровеносных сосудов, сердечных клапанов.

6) гепарин - важный компонент противосвёртывающей системы крови (его применяют как антикоагулянт при лечении тромбозов). Он синтезируется тучными клетками и находится в гранулах внутри этих клеток. Наибольшие количества гепарина обнаруживаются в лёгких, печени и коже. Дисахаридная единица гепарина похожа на дисахаридную единицу гепарансульфата. Отличие этих гликозаминогликанов заключается в том, что в гепарине больше N-сульфатных групп, а в гепарансульфате больше N-ацетильных групп.

 



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 169; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.35.203 (0.004 с.)