Тема 9. 8. Биосинтез заменимых аминокислот 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 9. 8. Биосинтез заменимых аминокислот



1. Углеродный скелет восьми заменимых аминокислот (Ала, Асп, Асн, Сер, Гли, Про, Глу, Глн) и цистеина может синтезироваться из глюкозы (рис. 9.15).

α-Аминогруппа вводится в соответствующие α-кетокислоты с помощью реакции трансаминирования. Универсальным донором α-аминогруппы является глутамат.

Непосредственно путем трансаминирования метаболитов ОПК с глутаматом синтезируются:

Рис. 9.15. Пути биосинтеза заменимых аминокислот

2. Частично заменимые аминокислоты Арг и Гис синтезируются в небольших количествах, которые не отвечают потребностям организма, что особенно ощутимо в детском возрасте. Синтез аргинина происходит в реакциях орнитинового цикла. Гистидин синтезируется из АТФ и рибозы.

Условно заменимые аминокислоты Тир и Цис образуются с использованием незаменимых аминокислот:

• фенилаланин превращается в тирозин под действием фенилаланингидроксилазы;

• для образования цистеина необходима сера, донором которой является метионин. В синтезе используются углеродный скелет и α-аминогруппа серина.

КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ ОБМЕНА АМИНОКИСЛОТ, ИЗУЧАЕМЫЕ В ДАННОЙ МОДУЛЬНОЙ ЕДИНИЦЕ

 

• Концентрация аммиака в сыворотке крови: 0,04-0,07 мг/дл (25-40 мкмоль/л)

• Концентрация мочевины в сыворотке крови: 15-50 мг/дл (2,5-8,4 ммоль/л)

• Суточное выведение мочевины: -25 г/сут

• Суточное выведение аммонийных солей: -0,5 г/сут

Модульная единица 3 ОСОБЕННОСТИ ОБМЕНА ОТДЕЛЬНЫХ АМИНОКИСЛОТ: СЕРИНА, ГЛИЦИНА, МЕТИОНИНА, ФЕНИЛАЛАНИНА, ТИРОЗИНА И ГИСТИДИНА. РОЛЬ ВИТАМИНОВ В12, В6 И ФОЛИЕВОЙ КИСЛОТЫ. ЗАБОЛЕВАНИЯ, СВЯЗАННЫЕ С НАРУШЕНИЕМ ОБМЕНА ФЕНИЛАЛАНИНА И ТИРОЗИНА.

СИНТЕЗ, БИОЛОГИЧЕСКАЯ РОЛЬ И ИНАКТИВАЦИЯ

БИОГЕННЫХ АМИНОВ

ТЕМА 9.9. ОБМЕН СЕРИНА И ГЛИЦИНА.

РОЛЬ ФОЛИЕВОЙ КИСЛОТЫ

Кроме путей обмена, характерных для большинства аминокислот, входящих в состав белков, почти для всех аминокислот существуют и специфические пути превращения. Рассмотрим обмен некоторых аминокислот, специфические пути превращения которых приводят к синтезу биологически важных продуктов и во многом определяют физиологическое состояние человека.

1. Серин - заменимая аминокислота, синтезируется из промежуточного

продукта гликолиза - 3-фосфоглицерата в последовательности реакций дегидрирования, трансаминирования и гидролиза под действием фосфатазы

(рис. 9.17).

В организме серин используется для синтеза:

• фосфолипидов (фосфатидилсерины, сфингомиелины);

• аминокислот (глицина, цистеина).

Основной путь катаболизма серина - его дезаминирование с образованием пирувата (см. тему 9.3).

2. Глицин образуется из серина под действием сериноксиметилтрансферазы. Коферментом этого фермента является тетрагидрофолиевая кислота (Н4-фолат),

которая присоединяет β-углеродный атом серина, образуя метилен - Н4-фолат

(рис. 9.18):

Глицин является предшественником:

• порфиринов (гема),

• пуриновых оснований,

• коферментов,

• глутатиона и др. Катаболизм глицина происходит

также с участием Н4-фолата, который связывает а-СН2-группу глицина (см. рис. 9.18).

3. Н4-фолат образуется в печени из фолиевой кислоты (фолата) с участием ферментов фолатредуктазы и дигидрофолатредуктазы (рис. 9.19). Коферментом этих редуктаз является NADPH.

Метиленовая группа - СН2- в молекуле метилен-Н4-фолата может превращаться в другие одноуглеродные группы:

Н4-фолат способен передавать эти группы на другие соединения и играет роль промежуточного переносчика одноуглеродных групп.

 

Одноуглеродные фрагменты используются для синтеза нуклеотидов и ряда соединений (см. рис. 9.18).

Рис. 9.17. Синтез серина из глюкозы

Рис. 9.18. Биологическая роль одноуглеродных групп

Рис. 9.19. Схема синтеза Н4-фолата в печени

4. Фолиевая кислота является витамином для человека и большинства млекопитающих (витамин ВС или В9). Она широко распространена в пищевых продуктах и синтезируется бактериями кишечника. Гиповитаминоз у человека возникает достаточно редко. Причинами его могут послужить:

• неправильное питание - недостаточное потребление овощей, фруктов и мясных продуктов;

• нарушение всасывания фолиевой кислоты в кишечнике;

• гепатит, цирроз и другие поражения печени, вызывающие снижение активности фолатредуктазы.

Гиповитаминоз фолиевой кислоты приводит к нарушению синтеза нуклеиновых кислот в организме, что сказывается прежде всего на быстро делящихся клетках крови, и развитию мегалобластной анемии.

5. Многие патогенные микроорганизмы способны синтезировать фолиевую кислоту из парааминобензойной кислоты, которая является составной частью фолата. На этом основано бактериостатическое действие сульфаниламидных лекарственных препаратов, которые являются структурными аналогами n-аминобензойной кислоты:

Препараты являются конкурентными ингибиторами ферментов синтеза фолиевой кислоты у бактерий или могут использоваться как псевдосубстраты, в результате чего образуется соединение, не выполняющее функции фолиевой кислоты, Это делает невозможным деление клеток, бактерии перестают размножаться и погибают. Сульфаниламиды называют антивитаминами.



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 1904; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.175.182 (0.006 с.)