Модульная единица 3 жиры, жирные кислоты и кетоновые тела как источники энергии. Эйкозаноиды, Строение, синтез и биологические функции 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Модульная единица 3 жиры, жирные кислоты и кетоновые тела как источники энергии. Эйкозаноиды, Строение, синтез и биологические функции



ТЕМА 8.7. МОБИЛИЗАЦИЯ ЖИРА. ГОРМОНАЛЬНАЯ

РЕГУЛЯЦИЯ МОБИЛИЗАЦИИ ЖИРОВ

1. Жиры, депонированные в адипоцитах в абсорбтивный период, используются как источник энергии в период голодания и при длительной физической работе. Жиры являются самыми высококалорийными веществами в организме, так как жирные кислоты, входящие в их состав, являются наиболее восстановленными молекулами (т.е. содержащими много связей -СН2-), при окислении которых выделяется большое количество энергии. Так, при окислении 1 г жиров выделяется 9,7 ккал, а 1 г углеводов - 4,7 ккал.

Мобилизация жира происходит в основном под действием гормонов глюкагона и адреналина и представляет собой гидролиз жира в адипоцитах до жирных кислот и глицерола ферментом - гормончувствительной

Рис. 8.16. Мобилизация жира из жировых депо

ГЧ-липаза - гормончувствительная липаза (ТАГ-липаза).

После отделения первой жирной кислоты под действием ТАГ-липазы остальные сложноэфирные связи в ДАГ и МАГ гидролизуются другими липазами

липазой (или ТАГ-липазой) (рис. 8.16). Этот фермент находится в адипоцитах и активируется путем фосфорилирования через аденилатциклазную систему. Кроме гормончувствительной липазы, в регуляции мобилизации жиров участвует и белок перилипин, который в дефосфорилированной форме покрывает капли жира в адипоцитах (рис. 8.17), а при фосфорилировании отделяется от них, и молекулы ТАГ становятся доступными действию гормончувствительной липазы.

 

Мобилизация жиров стимулируется также норадреналином, секретируемым симпатическими нервными окончаниями при физической работе и стрессе и передающим сигнал через аденилатциклазную систему. Действие норадреналина через синапсы более эффективно, чем действие циркулирующего в крови адреналина.

В результате мобилизации жиров концентрация жирных кислот в крови увеличивается приблизительно в два раза. Время полужизни жирных кислот очень мало (менее 5 минут); это означает, что существует быстрый поток жирных кислот из жировой ткани к другим органам. Жирные кислоты, как гидрофобные молекулы, транспортируются кровью в периферические ткани в комплексе с белком альбумином, имеющим центры связывания гидрофобных молекул.

Рис. 8.17. Роль перилипина в регуляции мобилизации жиров из жировой ткани

А - до действия глюкагона; Б - после действия гормона

Перилипин (П) фосфорилируется протеинкиназой А и отделяется от жировой капли. Фосфорилированная гормончувствительная липаза (ГЧЛ) получает доступ к субстрату - ТАГ и начинает их гидролиз. П-Ф - перилипин фосфорилированный

ТЕМА 8.8. β-ОКИСЛЕНИЕ ВЫСШИХ ЖИРНЫХ КИСЛОТ - ИСТОЧНИК ЭНЕРГИИ ДЛЯ СИНТЕЗА АТФ. РЕГУЛЯЦИЯ I -ОКИСЛЕНИЯ

Жирные кислоты, как и глюкоза, являются основными «топливными молекулами». Большинство тканей, кроме нервной ткани, эритроцитов (в которых отсутствуют митохондрии), использует жирные кислоты как источник энергии.

Жирные кислоты, проникающие из крови в клетку, сначала подвергаются реакции активации под действием фермента ацил-КоА-синтетазы:

Жирные кислоты могут вступать в различные реакции: окисления, синтеза ТАГ или фосфолипидов только в виде КоА-производных.

2. β-Окисление жирных кислот - это специфический путь катаболизма

жирных кислот, продуктом которого является ацетил-КоА. Название «β-окисление» эти реакции получили потому, что окисление в радикале жирной кислоты происходит по β-углеродному атому. β-Окисление жирных кислот и последующее за ним окисление ацетил-КоА в ЦТК служат источником энергии для синтеза АТФ.

 

Процесс β-окисления происходит в матриксе митохондрий и только в аэробных условиях, так как он связан с ЦПЭ через коферменты дегидрогеназ, водород от которых поступает в ЦПЭ. Внутренняя мембрана митохондрий непроницаема для ацил-КоА, поэтому существует система переноса

радикала жирных кислот через мембрану в комплексе с молекулой карнитина (рис. 8.18). Фермент карнитинацилтрансфераза I, осуществляющий перенос ацила на карнитин на внешней мембране митохондрий, является регуляторным в процессе β-окисления, так как определяет скорость переноса жирных кислот внутрь митохондрий.

Рис. 8.18. Транспорт высших жирных кислот через мембраны митохондрий

Во внешней мембране митохондрий находится фермент карнитинацилтрансфераза I, который катализирует перенос ацила с КоА на небольшую молекулу - карнитин. Затем ацилкарнитин с помощью транслоказы проходит через внутреннюю мембрану митохондрий, где фермент карнитинацилтрансфераза II переносит ацил на внутримитохондриальный HS-KoA. Фермент карнитинацилтрансфераза I - регуляторный в процессе β-окисления, ингибитором этого фермента является малонил-КоА

3. После того как ацил-КоА попадает в матрикс митохондрий, начинается процесс β-окисления, представляющий собой четыре последовательные реакции, которые заканчиваются укорочением жирной кислоты на два углеродных атома, отделяющиеся в форме ацетил-КоА (рис. 8.19). Эти четыре реакции β-окисления (дегидрирование, гидратация, дегидрирование, отщепление ацетил-КоА) обычно называют «циклом β-окисления», так как имеется в виду, что одни и те же реакции повторяются с радикалом жирной кислоты до тех пор, пока вся кислота не превратится в ацетильные остатки.

Количество молекул АТФ, которые образуются при окислении жирной кислоты, можно рассчитать по формуле:

 

2* - энергия двух макроэргических связей АТФ используется на активацию жирной кислоты.

Рис. 8.19. Реакции β-окисления жирных кислот

4. Регуляция β-окисления. Скорость процесса β-окисления зависит от ряда факторов:

• состояния голодания или сытости (т.е. соотношения инсулин - глюкагон);

• активности регуляторного фермента карнитинацилтрансферазы I;

• доступности субстрата - жирных кислот;

• потребности клетки в энергии;

• доступности кислорода.

Под действием инсулина, гормона «сытого состояния» в клетках печени появляется ингибитор регуляторного фермента карнитинацилтрансферазы I - малонил-КоА (рис. 8.18). Это вещество образуется в первой реакции синтеза жирных кислот, катализируемой регуляторным ферментом синтеза жирных кислот - ацетил-КоА-карбоксилазой. Появление в гепатоцитах малонил-КоА немедленно ингибирует β-окисление жирных кислот, таким образом, синтез и окисление жирных кислот не могут происходить одновременно. При голодании или физической работе под действием гормонов глюкагона или адреналина синтез малонил-КоА снижается и скорость β-окисления увеличивается, следовательно, окисление жирных кислот становится важным источником энергии при голодании или длительной физической работе.

В мышцах карнитинацилтрансфераза I также ингибируется малонилКоА. Хотя эта ткань не синтезирует жирные кислоты, в ней имеется изофермент ацетил-КоА-карбоксилазы, синтезирующий малонил-КоА для регуляции β-окисления. Этот изофермент фосфорилируется под действием протеинкиназы А, активируемой в клетках адреналином, и АМФ-зависимой протеинкиназой и таким образом ингибируется; концентрация малонилКоА снижается. Следовательно, при физической работе, когда в клетке появляется АМФ, под действием адреналина активируется β-окисление, однако его скорость зависит еще и от доступности кислорода. Поэтому β-окисление становится источником энергии для мышц только через 10-20 минут после начала физической нагрузки (так называемые аэробные нагрузки), когда приток кислорода к тканям увеличивается.

 

5. При голодании и физической работе активируется липолиз в жировой ткани и поток жирных кислот в ткани увеличивается. Жирные кислоты становятся важным источником энергии для таких тканей, как скелетные мышцы, миокард, печень. Однако мозг не может использовать жирные кислоты как источник энергии, потому что они не проникают через гематоэнцефалический барьер, являясь гидрофобными молекулами. Поэтому в таких ситуациях, особенно при длительном голодании, печень перерабатывает ~50% поступающих в нее жирных кислот в другие источники энергии - кетоновые тела, которые может утилизировать нервная ткань.



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 916; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.185.180 (0.009 с.)