Биохимия, ее задачи. Значение биохимии для медицины. Современные биохимические методы исследования. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Биохимия, ее задачи. Значение биохимии для медицины. Современные биохимические методы исследования.



Биохимия, ее задачи. Значение биохимии для медицины. Современные биохимические методы исследования.

БХ—наука о структуре веществ, входящих в состав живого организма, их превращениях и физико-химических процессах, лежащих в основе жизнедеятельности.

Задачи БХ

1.Изучение процессов БИОКАТАЛИЗА.

2.Изучение механизмов наследственности на молекулярном уровне.

3.Изучение строения и обмена нуклеиновых кислот.

4.Изучение строения и обмена белков, жиров

5.Изучение превращения углеводов.

7.Изучение биологической роли сигнальных молекул (ГОРМОН).

8.Изучение роли витаминов в обмене веществ.

9.Изучение роли минеральных веществ.

Значение БХ для медицины.

Основные задачи медицины: патогенез, диагностика, лечение, профилактика заболеваний.

1.Значение БХ для понимания механизма заболевания.

ПР. Сердечно-сосудистые заболевания (атеросклероз). В настоящее время предполагают, что важным является чувствительность рецепторов клеток к ЛПНП

2.Значение БХ для диагностики заболеваний.

Широкое использование биохимических исследований биологических жидкостей.

A. Количество субстратов.

Б. Исследование активности ферментов.

B. Исследование уровня гормонов. Методы РИА, ИФА. Выявление ПРЕДЗАБОЛЕВАНИЙ.

3. Значение БХ для лечения. Выявление нарушенных звеньев метаболизма, создание соответствующих лекарственных препаратов, широкое использование природных препаратов.

4.Значение БХ для профилактики заболеваний. ПР. Недостаток вит. С —цинга—для профилактики вит. С. Недостаток вит. D— рахит—вит. D

Аминокислоты, их классификация. Строение и биологическая роль аминокислот. Хроматография аминокислот.

Белки состоят из АК. Все АК можно разделить на 4 группы:

1.Заменимые - синтезируются в организме: АЛА, АСП, АСН, ГЛУ, ГЛН, ГЛИ, ПРО, СЕР.

2.Незаменимые - не синтезируются в организме и поступают с пищей: ВАЛ, ЛЕЙ, ИЛЕ. ЛИЗ. ТРЕ, МЕТ, ФЕН, ТРИ.

3.Частично заменимые - синтезируются в организме, но очень медленно и не покрывают всех потребностей организма: ГИС, АРГ.

4.Условно заменимые - синтезируются из незаменимых аминокислот: ЦИС (МЕТ), ТИР (ФЕН).

Полноценность белкового питания определяется:

1. Наличием всех незаменимых аминокислот. Отсутствие даже одной незаменимой аминокислоты нарушает биосинтез белка.

1. Аминокислотным составом белка. Все АК могут содержаться в продуктах как животного, так и растительного происхождения.

В изоэлектрическом состоянии белок менее устойчив. Это свойство белков используется при их ФРАКЦИВАНИИ:

1.ИОНООБМЕННАЯ ХРОМАТОГРАФИЯ.

Для неё используется ИОНООБМЕННИКИ, которые изготавливаются из чистой целлюлозы: ДЭАЭ - целлюлоза (содержит катионные группы); КМ - целлюлоза (содержит анионные группы). На ДЭАЭ разделяют отрицательно заряженные белки, на КМ - положительно заряженные. Чем больше в белке СООН групп, тем прочнее он связывается с ДЭАЭ целлюлозой.

2.Разделение белков на основании величины заряда - электрофорез белков. С помощью электрофореза в сыворотке крови выделяют как минимум 5 фракций: АЛЬБУМИНЫ, альфа, альфа-2, гамма, бета - глобулины.

Принципы классификации белков. Характеристика простых белков. Характеристика гистонов и протаминов.

Коферменты и их функции в ферментативных реакциях. Витаминные коферменты. Примеры реакций с участием витаминных коферментов.

КОФЕРМЕНТЫ - низкомолекулярные органические вещества не белковой природы. Они чаще всего содержат в своём составе различные витамины, следовательно, их делят на две группы: 1.Витаминные. 2.Невитаминные.

1.ТИАМИНОВЫЕ в составе витамин В1 (ТИАМИН) - ТМФ – ТИАМИНМОНОФОСФАТ, ТДФ- ТИАМИНДИФОСФАТ, ТТФ - ТИАМИНТРИФОСФАТ. ТПФ связана с ферментами ДЕКАРБОКСИЛАЗАМИ альфа КЕТОКИСЛОТ (ПВК, альфа КГК)

2.ФЛАВИНОВЫЕ содержат витамин В2 - ФМН – ФЛАВИНМОНОНУКЛЕОТИД, ФАД - ФЛАВИИАДЕНИНДИНУКЛЕОТИД.

ФМН и ФАД связанны с ферментами ДЕГИДРОГЕНАЗАМИ. Участвуют в реакциях ДЕГИДРИРОВАНИЯ.

3. ПАНТОТЕИНОВЫЕ (витамин ВЗ) - KOF A (HS-KOA - HS КОЭНЗИМ А) - КОФЕРМЕНТ АЦИЛИРОВАНИЯ.

4. НИКОТИНАМИДНЫЕ содержат витамин РР (НИАЦИН)- НАД (НИКОТИНАМИДАДЕНИНДИНУКЛЕОТИД), НАДФ (НИКОТИНАМИДАДЕНИНДИНУКЛЕОТИДФОСФАТ). Связаны с ДЕГИДРОГЕНАЗАМИ:

 

5.ПИРИДОКСИНОВЫЕ содержат витамин В6. ПАФ – ПИРИДОКСАМИНОФОСФАТ, ПФ - ПИРИДОКСАЛЬФОСФАТ.:

1.Реакции ПЕРЕАМИНИРОВАНИЯ (ТРАНСАМИНИРОВАНИЕ). Связан с ферментами АМИНОТРАНСФЕРАЗАМИ.

 

2.РЕАКЦИИ ДЕКАРБОКСИЛИРОВАНИЯ АК.

Номенклатура и классификация ферментов. Характеристика класса оксидоредуктаз. Примеры реакций с участием оксидоредуктаз

1. ОКСИДОРЕДУКТАЗЫ.

2. ТРАНСФЕРАЗЫ.

3. ГИДРОЛАЗЫ.

4. ЛИАЗЫ.

5. ИЗОМЕРАЗЫ.

6. ЛИГАЗЫ.

Каждый класс делится на подклассы. Подклассы делятся на ПОДПОДКЛАССЫ.

1.ОКСИДОРЕДУКТАЗЫ.

Ферменты этого класса участвуют в ОВР. Это наиболее многочисленный класс ферментов (более 400 ОКСИДОРЕДУКТАЗ). 1. АЭРОБНЫЕ ДЕГИДРОГЕНАЗЫ. Они участвуют в реакциях ДЕГИДРИРОВАНИЯ.

Некоторые АЭРОБНЫЕ ДЕГИДРОГЕНАЗЫ называют ОКСИДАЗАМИ. Например, ОКСИДАЗЫ АК.

2. АНАЭРОБНЫЕ Д Г. Эти ферменты также участвуют в реакциях ДЕГИДРИРОВАНИЯ, т.е. отнятия Н2 от окисляемого субстрата и транспортировка его на любой др. субстрат, кроме О2.

 

 

3.ПЕРОКСИДАЗЫ. Ферменты, которые отнимают Н2 от окисляемого субстрата и транспортируют его на ПЕРОКСИД.

4.ЦИТОХРОМЫ. Они содержат в своем составе ГЕМ. ЦИТОХРОМЫ участвуют в транспорте только электронов.

Характеристика класса лиаз, изомераз и лигаз (синтетаз), примеры реакций.

Лиазы. 1.ДЕКАРБОКСИЛАЗЫ участвуют в реакциях ДЕКАРБКСИЛИРОВАНИЯ.

2.Ферменты, разрывающие связи между атомами углеводов не ГИДРОЛИТИЧЕСКИМ путём без участия воды (АЛЬДОЛАЗА).

3.Ферменты, участвующие в реакциях ГИДРАТАЦИИ и ДЕГИДРАТАЦИИ.

ИЗОМЕРАЗЫ. Ферменты этого класса участвуют в ИЗОМЕРИЧЕСКИХ превращениях. При этом один структурный изомер может превращаться в другой, за счёт внутри молекулярной перегруппировки атомов.

ЛИГАЗЫ. Ферменты этого класса участвуют в реакциях соединения двух и более простых веществ с образованием нового вещества. Эти реакции требуют затрат энергии извне в виде АТФ.

Характеристика классов ферментов трансфераз и гидролаз. Примеры реакций с участием данных ферментов.

ТРАНСФЕРАЗЫ. Ферменты этого класса участвуют в транспорте атомных групп от донора к акцептору. В зависимости от переносимых групп, ТРАНСФЕРАЗЫ делятся на несколько подклассов:

1.АМИНОТРАНСФЕРАЗЫ. Они участвуют в реакциях ПЕРЕАМИНИРОВАНИЯ.

АСАТ - АСПАРАГИНОВАЯ АМИНОТРАНСФЕРАЗА.

2.МЕТИЛТРАНСФЕРАЗЫ (СНЗ группы).

3.ФОСФОТРАНСФЕРАЗЫ (ФОСФАТНЫЕ группировки).

4.АЦИЛТРАНСФЕРАЗЫ (кислотные остатки).

ГИДРОЛАЗЫ. Ферменты этого класса участвуют в реакциях разрыва связей в молекулах субстратов при участии воды.

1.ЭСТЕР АЗЫ действуют на СЛОЖНО-ЭФИРНЫЕ связи. К ним относятся ЛИПАЗЫ, ФОСФОЛИПАЗЫ, ХОЛЕСТЕРАЗЫ.

2.ГЛИКОЗИДАЗЫ - действует на ГЛИКОЗИДНУЮ связь, находящуюся в сложных углеводах. К ним относятся АМИЛАЗА, САХАРАЗА, МАЛЬТАЗА, ГЛИКОЗИДАЗЫ, ЛАКТАЗА.

3.ПЕПТИДАЗЫ участвуют в разрыве ПЕПТИДНЫХ связей в белках. К ним относятся ПЕПСИН, ХИМОТРИПСИН, АМИНОПЕПТИДАЗА, КАРБОКСИПЕПТИДАЗА и т.д.

12. Современные представления о механизме действия ферментов. Стадии ферментативной реакции, молекулярные эффекты, примеры.

МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ. С термодинамической точки зрения, действие любого фермента направлено на понижение энергии активации. Чем ниже энергия активации, тем выше скорость реакции. Теория действия ферментов была предложена БЕЙЛИСОМ и ВАНБУРГОМ. Согласно ей, фермент представляет собой "губку", которая адсорбирует на своей поверхности молекулы реагирующих веществ. Она как бы стабилизирует их, способствует взаимодействию. 70 лет назад была предложена др. теория МИХАЭЛИСОМ и МЕНТЕНОМ. Они выдвинули понятие о F-S комплексе. Фермент взаимодействует с субстратом, образуя нестойкий промежуточный F-S комплекс, который затем распадается с образованием продуктов реакции (Р) и освобождением фермента. В этом процессе выделяют несколько стадий:

1.Диффузия S к F и их СТЕРИЧЕСКОЕ взаимодействие с образованием F-S комплекса. Эта стадия не продолжительна. На этой стадии практически не происходит понижения энергии активации.

2.Преобразование F-S комплекса в один или несколько активированных комплексов. Эта стадия является наиболее продолжительна. При этом происходит разрыв связей в молекуле субстрата, образование новых связей. Е активации ¯

3.Освобождение продуктов реакции от фермента и поступление их в окружающую среду.

МОЛЕКУЛЯРНЫЕ ЭФФЕКТЫ ФЕРМЕНТАТИВНОГО ДЕЙСТВИЯ.

1. Эффект концентрации. Поэтому основная роль ферментов заключается в притяжении молекул реагирующих веществ на свою поверхность и концентрация этих молекул в области активного центра фермента.

2. Эффект, сближения и ориентации. Контактные участки активного центра фермента связывают специфически молекулы субстрата, сближают их и обеспечивают ориентацию так, чтобы это было выгодно для действия каталитических групп фермента.

3. Эффект натяжения ("дыбы"). До присоединения субстрата к активному центру фермента его молекула в расслабленном состоянии. После связывания молекула субстрата растягивается и принимает напряжённую деформированную конфигурацию. Понижается Е активации.

4. Кислотно-основной катализ. Группы кислотного типа отщепляют Н+ и имеют отрицательный заряд. Группы основного типа присоединяют Н+ и имеют положительный заряд. Это приводит к понижению энергии активации.

5.Эффект индуцированного соответствия. Он объясняет специфичность действия ферментов. По этому поводу имеется 2 точки зрения: А). Гипотеза ФИШЕРА. Согласно ей имеется строгое СТЕРИЧЕСКОЕ соответствие субстрата и активного центра фермента. В). Теория индуцированного соответствия КОШЛЕНДА. Согласно ей молекула фермента - это гибкая структура. После связывания фермента с субстратом, изменяется КОНФОРМАЦИЯактивного центра фермента и всей молекулы субстрата. Они находятся в состоянии индуцированного соответствия. Это происходит в момент взаимодействия.

13. Ингибирование ферментов. Конкурентное и неконкурентное ингибирование, примеры реакций. Лекарственные вещества как ингибиторы ферментов.

ИНГИБИТОРЫ. Ферменты - это катализаторы с регулируемой активностью. Ею можно управлять с помощью различных веществ. Действие фермента можно ИНГИБИРОВАТЬ определёнными химическими веществами- ИНГИБИТОРАМИ. По характеру действия ингибиторы делятся на 2 большие группы:

1.Обратимые - это соединения, которые НЕКОВАЛЕНТНО взаимодействуют с ферментом, при этом образуется комплекс, способный к диссоциации.

2.Необратимые - это соединения, которые могут специфически связывать определенные функциональные группы активного центра фермента. Они образуют с ним прочные КОВАЛЕНТНЫЕ связи, поэтому такой комплекс трудно разрушить.

ВИДЫ ИНГИБИРОВАНИЯ. По механизму действия выделяют следующие виды ИНГИБИРОВАНИЯ:

1. Конкурентное ингибирование - торможение ферментативной реакции, вызванное действием ингибиторов, структура которого очень близка к структуре S, поэтому и S, и ингибитор конкурируют за АЦ Ф. и связывается с ним то соединение. концентрация которого в окружающей среде больше. E+S — ES—EP

Многие лекарственные препараты действуют по типу конкурентного ингибитора. Примером является применение СУЛЬФАНИЛА (СА). При различных инфекционных заболеваниях, которые вызываются бактериями, применяются СА препараты. Введение СА приводит к ИНГИБИРОВАНИЮ фермента бактерий, которые синтезируют ФОЛИЕВУЮ кислоту. Нарушение синтеза этой кислоты проводит к нарушению роста микроорганизмов и их гибели.

2. НЕКОНКУРЕНТНОЕ ИНГИБИРОВАНИЕ -ингибитор и субстрат не имеют структурного сходства; ингибитор не влияет на образование F-S-комплекса; образуется тройной ESI -комплекс.

Такие ингибиторы влияют на каталитическое превращение субстрата. Они могут связываются как непосредственно с каталитическими группами AЦ Ф, так и вне АЦ Ф. Но в любом случае они влияют на конформацию активного центра. В качестве неконкурентного ингибитора выступают ЦИАНИДЫ. Они прочно связываются с ионами железа ЦИТОХРОМОКСИДАЗЫ. Этот фермент является одним из компонентов дыхательной цепи. Блокирование дыхательной цепи приводит к мгновенной гибели организме. Действие можно снять только с помощью РЕАКТИВАТОРОВ.

3. СУБСТРАТНОЕ ИНГИБИРОВАНИЕ - это торможение ферментативной реакции, вызванное избытком субстрата. При этом образуется F-S комплекс, но он не подвергается каталитическим превращениям, т.к. делает молекулу фермента неактивной. Действие субстратного ингибитора снимается путём уменьшения концентрации субстрата.

4. АЛЛОСТЕРИЧЕСКОЕ ИНГИБИРОВАНИЕ. АЛЛОСТЕРИЧЕСКИЕ ферменты могут иметь 2 и более единиц протомеров. При этом одна имеет каталитический центр и называется каталитической, а другая - АЛЛОСТЕРИЧЕСКИЙ центр и называется регуляторной. В отсутствии АЛЛОСТЕРИЧЕСКОГО ИНГИБИТОРА субстрат присоединяется к каталитическому центру, и идёт обычная каталитическая реакция. При появлении АЛЛОСТЕРИЧЕСКОГО ИНГИБИТОРА, он присоединяется к регуляторной единице и изменяет КОНФОРМАЦИЮ центра фермента, в результате этого активность фермента снижается.

14. Понятие об изоферментах. Характеристика изоферментов лактатдегидрогеназы (ЛДГ) и креатинкиназы (КК). Диагностическая роль изоферментов КК. Использование ферментов в медицине. Энзимодиагностика и энзимотерапия. Энзимопатология, примеры.

Изоферменты - это группа Ф-ов, которые катализируют одну и ту же реакцию, но отличаются по некоторым физико-химическим свойствам. Они возникли вследствие генетических различий при формировании первичной структуры ферментного белка. Изоферменты обладают строгой органной специфичностью.

Определение активности ИЗОФЕРМЕНТОВ имеет диагностическое значение.

ЛДГ (лактатдегидрогеназа) имеет 5 изоферментов, каждый из которых является тетрамером. Эти Ф-ты ЛДГ различаются сочетанием – H и М-типа. В печени и мышцах преобладают и максимально активны ЛДГ-4 и ЛДГ-3. В миокарде, почечной ткани максимально активны ЛДГ-1 и ЛДГ-2. При патологии печени в сыворотке крови резко возрастает активность ЛДГ-4, ЛДГ-5.

КФК (КРЕАТИНФОСФОКИНАЗА) - 0,16 - 0,3ммоль/л. Состоит из 2-х единиц: В (мозг), М (мышцы). КФК-1 (ВВ, 0%, ЦНС) повышается при глубоком тяжёлом поражении (опухоль, травма, ушиб мозга). КФК-2 (MB, 3%, миокард) повышается при инфаркте миокарда, травме сердца. КФК-3 (ММ, 97%, мышечная ткань) повышается при поражении миокарда, синдром длительного давления.

Энзимопаталогия - изучает заболевания, связанные с нарушением деятельности Ф. в организме, либо полным их отсутствием. Н-р, фенилкетонурия: фенилаланин превращается в различные продукты, но только не в тирозин - фенилПВК, фениллактат. Это приводит к нарушению физических возможностей организма. Другой пример - отсутствие гистидазы. Этот Ф. участвует в превращении гистидина, отсутствие его приводит к накоплению гис в крови и моче, что оказывает негативное влияние на все обменные процессы, тормозится умственное и физическое развитие.

Энзимодиагностика - определение активности Ф. в диагностических целях. В основе этого лежит органоспецифичность Ф. Н-р. щелочная фосфатаза - специфический Ф, характеризует состояние костной ткани. Активность его повышается при рахитах, механической желтухе. При различных деструктивных процессах происходит нарушение целостности мембран поряженных органов, наблюдается выброс Ф. в кровь. Н-р. инфаркт миокарда.

Энзимотерапия - использование различных Ф в клинической практике в лечебных целях. Н-р при пониженной кислотности - пепсин.

 

Цитохромы электронтранспортной цепи. Их функционирование. Образование воды как конечного продукта обмена.

ЦИТОХРОМЫ - это ГЕТЕРОПРОТЕИНЫ. Их белковой частью является ГЕМ, структура которого представляет собой 4 ПИРРОЛЬНЫХ кольца и атом железа, который легко меняет валентность. Также могут включать медь.

20. Пути синтеза АТФ. Субстратное фосфорилирование (примеры). Молекулярные механизмы окислительного фосфорилирования (теория Митчелла). Разобщение окисления и фосфорилирования.

Процесс образования АТФ в дыхательной цепи – окислительное фосфорилирование. За счет энергии транспорта электронов в ДЦ из АДФ и неорганического фосфата образуется АТФ. Субстратное фосфорилирование – процесс синтеза АТФ из АДФ и фосфата за счет энергии окисленного субстрата в цитоплазме клетки. Примером субстратного фосфорилирования могут служить реакции:

Основные положения теории Митчела:

1.Мембрана МИТОХОНДРИЙ не проницаема для протонов.

2.Образуется протонный потенциал в процессе транспорта электронов и протонов.

3.Обратный транспорт протонов в МАТРИКС сопряжен с образованием АТФ.

Процесс транспорта электронов происходит во внутренней мембране. Протоны переносятся в межмембранное пространство, а электроны продвигаются по дыхательной цепи. Внутренняя мембрана со стороны матрикса заряжается отрицательно, а со стороны межмембранного пространства - положительно. Во время дыхания создается ЭЛЕКТРО-ХИМИЧЕСКИЙ градиент; концентрационный и разности потенциалов. Электрический и концентрационный градиент составляет ПРОТОНДВИЖУЩУЮ силу, которая дает силу для синтеза АТФ. На определенных участках внутренней мембраны есть протонные каналы. Протоны могут проходить обратно в матрицу, при этом образующаяся энергия идёт на синтез АТФ.

Разобщение дыхания и фосфорилирования

Некоторые химические вещества (протонофоры) могут переносить протоны или другие ионы (ионофоры) из межмембранного пространства через мембрану в матрикс, минуя протонные каналы АТФ-синтазы. В результате этого исчезает электрохимический потенциал и прекращается синтез АТФ. Это разобщение дыхания и фосфорилирования. В результате разобщения количество АТФ снижается, а АДФ увеличивается. Разобщители - липофильные вещества, легко проходящие через липидный слой мембраны. Это 2,4-динитрофенол, присоединяющий протон в межмембранном пространстве и перенося его в матрикс.

Переаминирование и декарбоксилирование аминокислот. Химизм процессов, характеристика ферментов и коферментов. Образование амидов.

1). Основной путь превращения аминокислот в тканях - это реакции ПЕРЕАМИНИРОВАНИЯ -реакции между АМИНО- и КЕТОКИСЛОТАМИ. Эти реакции катализирует фермент - АМИНОТРАНСФЕРАЗА. ТРАНСАМИНИРОВАНИЮ могут подвергаться все аминокислоты кроме ЛИЗ и ТРЕ. Наибольшее значение имеют AT, донорами аминогрупп которых являются АЛА, АСП, ГЛУ.

Роль реакций ТРАНСАМИНИРОВАНИЯ:

1. используются для синтеза заменимых аминокислот.

2. Является начальным этапом катаболизма аминокислот

3. В результате ТРАНСАМИНИРОВАНИЯ образуются альфа -КЕТОКИСЛОТЫ, которые включаются в гЛЮКОНЕОГЕНЕЗ.

4. Протекают в разных тканях, но более всего в печени. Определение активности AT имеет диагностическое значение в клинике. При избытке АЛАНИНА или недостатке АСПАРАГИНОВОЙ К-ТЫ:

1. АЛА + альфа-КГК ↔ ГЛУ + ПВК

2. ГЛУ + ЩУК ↔АСП + альфа-КГК

Декарбоксилирование аминокислот,роль витамина В6.Образование биогенных аминов

2).Реакции ДЕКАРБОКСИЛИРОВАНИЯ - разрушение СООН-группы с выделением СО2. При этом аминокислоты в тканях образуют биогенные амины, которые являются биологически активными веществами (БАВ):

1. НЕЙРОМЕДИАТОРОВ (СЕРЕТОНИН, ДОФАМИН, ГАМК),

2. Гормоны (АДРЕНАЛИН, НОРАДРЕНАЛИН),

3. Регуляторы местного действия (ГИСТАМИН).

ГАМК является НЕИРОМЕДИАТОРОМ тормозного действия. ДОФАМИН является НЕИРОМЕДИАТОРОМ возбуждающего действия. Он является основой для синтеза АДРЕНАЛИНА и НОР АДРЕНАЛИНА.

ГИСТАМИН повышает секрецию желудочного сока, поэтому применяется в клинической практике при зондировании. Обладает сосудорасширяющим действием, понижает АД.

27. Дезаминирование аминокислот. Виды дезаминирования. Окислительное дезаминирование. Непрямое дезаминирование аминокислот на примере тирозина.

ДЕЗАМИНИРОВАНИе - разрушение NН2-группы с выделением аммиака. В организме возможны следующие виды:

1. Восстановительное

2.ГИДРОЛИТЙЧЕСКОЕ:

3. Внутримолекулярное:

Эти три вида ДЕЗАМИНИРОВАНИЯ имеют место при гниении.

4. Окислительное. ОКИСЛИТЕЛЬНОМУ ДЕЗАМИНИРОВАНИЮ подвергается только ГЛУ.

ОКИСЛИТЕЛЬНОМУ ДЕЗАМИНИРОВАНИЮ подвергаются и другие аминокислоты, но этот путь является непрямым. Он идёт через ГЛУ и называется процессом НЕПРЯМОГО ОКИСЛИТЕЛЬНОГО ДЕЗАМИНИРОВАНИЯ.

КАРБОМОИЛФОСФАТ

 

Образование мочевины идёт только в печени. Две первые реакции цикла (образование ЦИТРУЛЛИНА и АРГИНИНОСУКЦИНАТА) идут в МИТОХОНДРИЯХ, остальные в цитоплазме. В организме в сутки образуется 25гр мочевины. Этот показатель характеризует мочевино- образующую функцию печени. Мочевина из печени поступает в почки, где и выводится из организма как конечный продукт азотистого обмена.

Особенности обмена пуриновых нуклеотидов. Их строение и распад. Образование мочевой кислоты. Подагра.

Для биосинтеза ПУРИНОВЫХ оснований доносами атомов и атомных групп являются:

 

Окисление мочевой кислоты - окисление ПУРИНОВЫХ НУКЛЕОЗИДОВ.

 

Мочевая кислота является конечным продуктом распада ПУРИНОВЫХ НУКЛ.

Уровень мочевой кислоты свидетельствует об интенсивности распада ПУРИНОВЫХ оснований тканей организма и пищи.

НАРУШЕНИЕ ОБМЕНА НУКЛЕОТИДОВ. ГИПЕРУРИКЕМИЯ - повышение уровня мочевой кислоты в крови указывает на повышенный распад нуклеиновых кислот или пуриновых нуклеотидов.(подагру). Заболевание генетически детерминировано и носит семейный характер. При подагре кристаллы мочевой кислоты откладываются в суставных хрящах, синовиальной оболочке, клетчатке. Развивается тяжелый острый механический подагрический артрит и нефропатии.

Генетический код

Современные представления о структурно-функциональной организации ДНК: генная (структурные, регуляторные элементы ДНК) и негенная (тандемные повторы, псевдогены, мобильные элементы ДНК) области. Основные направления молекулярной биологии (OMICS): геномика, транскриптомика, РН-омика.

95% ДНК человека представляет негенная часть. 5% - собственно гены.

ФУНКЦИОНАЛЬНЫЕ ЭЛЕМЕНТЫ ГЕНОМА:

1. СТРУКТУРНЫЕ ГЕНЫ

2. РЕГУЛЯТОРНЫЕ ЭЛЕМЕНТЫ

Структурные гены кодируют синтез МРНК, ТРНК, РРНК. Регуляторные элементы не кодируют РНК и, соответственно, белков; влияют на работу

структурных генов.

Не генная часть представлена:

1. ТАНДЕМНЫЕ ПОВТОРЫ монотонные повторы НУКЛЕОТИДОВ, не имеющие смысла. Это так называемые «пустынные участки» ДНК. В настоящее время смысл этих участков: выполнение структурной функции и площадки для образования генов в эволюции (эволюционный резерв).

2. ПСЕВДОГЕНЫ - неактивные, но стабильные генетические элементы, возникающие в результате мутации в ранее работавших генах (гены, выключенные мутацией). Это побочный продукт и генетический резерв эволюции. Составляют 20 - 30% не генной части ДНК.

3. Мобильные генетические элементы:

-ТРАНСПОЗОНЫ - участки ДНК, способные вырезаться и встраиваться в другие области

ДНК. Это так называемые «странники генов».

-РЕТРОТРАНСПОЗОНЫ - участки ДНК, копирующиеся в пределах генома, как внутри

хромосомы, так и между ними. Могут изменять смысл структурных генов человека, приводят к мутациям. Геном человека изменяется в течении жизни на 10 - 30%.

- поврежденные неактивные, мобильные генетические элементы. Не могут ни вырезаться, ни встраиваться из-за отсутствия в клетке ОБРАТНОЙ ТРАНСФЕРАЗЫ. Если фрагмент поступает в клетку с вирусом, то тогда эти гены начинают транскрибироваться.

Основные направления молекулярной биологии:

ГЕНОМИКА - отрасль молекулярной биологии, изучающая структуру и механизмы работы гена.

Транскриптомика – изуение и идентификация всех мРНК, кодирующих белки, изучение их количества и закономерностей экспрессии структурных генов.

РН-омика – раздел молекулярной биологии, занимающийся изучением и идентификацией всех некодирующих РНК

31. Механизмы репликации ДНК (матричный принцип, полуконсервативный способ). Условия, необходимые для репликации. Этапы репликации

Механизмы РЕПЛИКАЦИЯ - процесс самоудвоения ДНК. В основе механизма репликации лежит принцип комплиментарности. К механизму репликации относится матричный биосинтез. Репликация ДНК идёт полуконсервативным способом: на каждой материнской полинуклеотидной цепи синтезируется дочерняя цепь.

Условия необходимые для репликации:

1. Матрица - нити ДНК. Расщепление нити называется РЕПЛИКАТИВНАЯ ВИЛКА

2. Субстрат. Пластическим материалом являются ДЕЗОКСИНУКЛЕОТИДТРИФОСФАТЫ:
дАТФ, дГТФ, дЦТФ, дТТФ.

3. Ионы магния.

Репликативный комплекс ферментов:

A) ДНК -раскручивающие белки:

1. DNA-A (вызывает расхождение нитей)

2. ХЕЛИКАЗЫ (расщепляют цепь ДНК)

3. ТОПОИЗОМЕРАЗЫ 1 и 2 (раскручивают свер спирали). Разрывают (3',5')-фосфодиэфирные связи.

B) Белки, препятствующие соединению нитей ДНК (SSB -белки)

C) ДНК-ПОЛИМЕРАЗА (катализирует образование фосфодиэфирных связей). ДНК- ПОЛИМЕРАЗА только удлиняет уже существующую нить, но не может соединить два свободных НУКЛЕОТИДА.

D) ПРАЙМАЗА (катализирует образование «затравки» к синтезу).

Е)ДНК-ЛИГАЗА.

5. ПРАЙМЕРЫ - «затравка» для репликации. Это короткий фрагмент из рИБОНУКЛЕОТИДТРИФОСФАТОВ (2 - 10)..

Основные этапы репликации.

I. ИНИЦИАЦИЯ репликации.

Происходит под влиянием внешних стимулов (факторов роста). Белки соединяются с рецепторами на плазматической мембране и вызывают репликацию в синтетическую фазу клеточного цикла. Смысл инициации заключается в присоединении в точку репликации DNА-А, стимулирующего расхождение двойной спирали. В этом принимает участие и ХЕЛИКАЗА. Действуют ферменты (ТОПОИЗОМЕРАЗЫ), вызывающие раскручивание сверх спирали. SSВ-белки препятствуют соединению дочерних цепей. Образуется РЕПЛИКАТИВНАЯ ВИЛКА.

2. Образование дочерних нитей.

Этому предшествует образование ПРАЙМЕРОВ с помощью ПРАЙМАЗЫ. Действует ДНК-ПОЛИМЕРАЗА и образуется дочерняя нить ДНК. Этот процесс происходит по принципу комплиментарности, и синтез идёт от 5* к 3* концу синтезируемой нити.

На одной из материнских нитей будет строиться непрерывная цепь, а на противоположной нити – фрагменты ОКАЗАКИ.

3. Удаление ПРАЙМЕРОВ с помощью ЭКЗОНУКЛЕАЗЫ,

4. Соединение коротких фрагментов с помощью ДНК-ЛИГАЗЫ.

Репликативный комплекс (хеликаза, топоизомераза). Праймеры и их роль в репликации.

A) ДНК -раскручивающие белки:

1. DNA-A (вызывает расхождение нитей)

2. ХЕЛИКАЗЫ (расщепляют цепь ДНК)

1. ТОПОИЗОМЕРАЗЫ 1 и 2 (раскручивают свер спирали). Разрывают (3',5')-фосфодиэфирные связи.

B) Белки, препятствующие соединению нитей ДНК (SSB -белки)

C) ДНК-ПОЛИМЕРАЗА (катализирует образование фосфодиэфирных связей). ДНК-
ПОЛИМЕРАЗА только удлиняет уже существующую нить, но не может соединить два свободных НУКЛЕОТИДА.

D) ПРАЙМАЗА (катализирует образование «затравки» к синтезу).

Е)ДНК-ЛИГАЗА.

5. ПРАЙМЕРЫ - «затравка» для репликации. Это короткий фрагмент, состоящий из РИБОНУКЛЕОТИДТРИФОСФАТОВ (2 - 10). Образование ПРАИМЕРОВ катализируется ПРАЙМАЗОЙ. Действуют ферменты (ТОПОИЗОМЕРАЗЫ), вызывающие раскручивание сверх спирали. SSB-белки препятствуют соединению дочерних цепей. Образуется РЕПЛИКАТИВНАЯ ВИЛКА. Образование дочерних нитей. Этому предшествует образование ПРАИМЕРОВ с помощью фермента ПРАЙМАЗЫ. Действует ДНК-ПОЛИМЕРАЗА и образуется дочерняя нить ДНК. Этот процесс происходит в соответствии с принципом комплиментарности, и синтез идёт от 5' к 3' концу синтезируемой нити.

На одной из материнских нитей будет строиться непрерывная цепь, а на противоположной нити - цепь из коротких фрагментов (фрагментов ОКАЗАКИ) Удаление ПРАИМЕРОВ с помощью ЭКЗОНУКЛЕАЗЫ.

32. Биосинтез РНК (транскрипция). Условия транскрипции.

Транскрипция - передача информации с ДНК на РНК (биосинтез РНК). Транскрипции подвергаются только определённые части молекулы ДНК. Эта часть называется ТРАНСКРИПТОНОМ. ДНК эукариот прерывистая: участки, несущие информацию (ЭКЗОНЫ), чередуются с участками, не несущими информацию (ИНТРОНЫ). В ДНК с 5'-конца выделяют ПРОМОТОРНУЮ область - место присоединения РНК-ПОЛИМЕРАЗЫ. С 3'-конца - ТЕРМИНАТОРНАЯ зона. Эти области не транскрибируются. УСЛОВИЯ ТРАНСКРИПЦИИ.

1. Матрица - 1 нить ДНК. Образуется транскрипционный глазок.

2. Структурные компоненты - РИБОНУКЛЕОЗИД-3-ФОСФАТЫ (АТФ, ГТФ, ЦТФ, УТФ).

3. ДНК-зависимая РНК-ПОЛИМЕРАЗА.

Этапы транскрипции

ОСНОВНЫЕ ЭТАПЫ ТРАНСКРИПЦИИ.

1. ИНИЦИАЦИЯ. Заключается в присоединении РНК-ПОЛИМЕРАЗЫ к ПРОМОТОРУ, что приводит к расхождению нитей ДНК. Импульсом к присоединению РНК-ПОЛИМЕРАЗЫ является присоединение ТВР-белка к TATA-боксу.

2. ЭЛОНГАЦИЯ (удлинение). Соединение РИБОНУКЛЕОЗИДМОНОНУКЛЕОТИДОВ и образование фосфодиэфирных связей между НУКЛЕОТИДАМИ с помощью РНК-ПОЛИМЕРАЗЫ, которая передвигается вдоль нити ДНК. Присоединение НУКЛЕТИДОВ идет в соответствии с принципом комплиментарности, только будут РИБОНУКЛЕОТИДЫ и - УМФ.

3. ТЕРМИНАЦИЯ (окончание).Заключается в том, что со стороны 3'-конца образованной РНК присоединяется множество (до 200 - 300) АДЕНИЛОВЫХ НУКЛЕОТИДОВ - поли А. Образуется точная копия гена. АДЕНИЛОВЫЕ НУКЛЕОТИДЫ защищают 3'-конец от действия ЭКЗОНУКЛЕАЗ. С 5'-конца образуется защита, так называемый «САР» (чаще всего УДФ). Эта образовавшаяся копия гена называется ТРАНСКРИПТ.

4. ПРОЦЕССИНГ (созревание).

2. Кепирование 5-конца

3. Формирование полиадениловой последовательности

4. СПЛАЙСИНГ - удаление интронов и соединение ЭКЗОНОВ между собой. Играет важную роль в эволюции организмов,

5. Альтернативный СПЛАЙСИНГ- из одной пре-иРНК образуется несколько ИРНК и соответственно несколько белков, что проявляется в разнообразии признаков у организмов.

Основные проявления патологии углеводного обмена и возможные причины нарушения обмена углеводов на различных этапах обмена веществ. (Написать реакции). Гликемия как показатель состояния углеводного обмена. Количественная оценка гликемии в норме и при патологии. Развитие сахарного диабета.

Нарушение углеводного обмена может быть на различных этапах. ГИПО-, ГИПЕРГЛюКОЗЭМИЯ, ГЛЮКОЗУРИЯ является показателями углеводного иомена. ГЛЮКОЗУРИЯ возможна в том случае, если превышается величина почечного порога больше 10 ммоль/л. Наиболее часто нарушения углеводного обмена возможны на следующих этапах:

1. на этапе поступления углеводов с пищей. Большая нагрузка углеводов ведёт к развитию ГИПЕРГЛЮКОЗЕМИИ, ГЛЮКОЗУРИИ, усиленному биосинтезу жира, развитию ожирения.

2. При поражении слизистых оболочек ЖКТ. При поражении слизистой желудка нарушается выработка соляной кислоты. При поражении слизистой оболочки тонкого кишечника нарушается всасывание и гидролиз ДИСАХАРИДОВ пищи.

При поражении ПЖЖ нарушается переваривание гликогена, крахмала пищи под влиянием ферментов. Наиболее грозным заболеванием является сахарный диабет. В ПЖЖ в В -клетках синтезируется белок инсулин, который обеспечивает транспорт глюкозы из крови в ткани. В случае недостаточной выработки инсулина развивается ГИПЕРГЛЮКОЗЕМИЯ, ГЛЮКОЗУРИЯ, КЕТОНУРИЯ. В клетках развивается энергетический голод, который компенсируется за счёт процессов ГЛЮКОНЕОГЕНЕЗА и усиления процессов окисления белков и жиров, что сопровождается избыточной продукцией АЦЕТИЛ-КОА, NH3. NH3 токсичный продукт, создаёт предпосылки для конденсации АЦЕТИЛ-КОА и образования кетоновых тел:

 

При поражении печени нарушается процесс биосинтеза и распада гликогена. Наследственные заболевания наблюдаются при генетических дефектах ферментов, участвующих в метаболизме углеводов. Наиболее часто встречаются ГЛИКОГЕНОЗЫ (ГИРКЕ, ПОМПЕ) и АГЛИКОГЕНОЗЫ (ЛЬЮИСА, АНДЕРСЕНА), которые связаны с недостаточной активностью или полным отсутствием ферментов, участвующих в распаде или синтезе гликогена. У детей встречается АЛАКТОЗИЯ - непереносимость лактозы в виду генетического дефекта ЛАКТАЗЫ ЭНТЕРОЦИТОВ.

Глюкоза в цельной капиллярной крови натощак - 3,3 - 5,5ммоль/л

ГИПЕРГЛИКЕМИЯ: избыток контринсулярных гормонов, дефицит инсулина (ИЗСД), нарушение функции рецепторов (ИНСД), стресс (адреналин повышает уровень глюкозы), употребление избытка углеводов.

ГИПОГЛИКЕМИЯ: передозировка инсулина, недостаток контринсулярных гормонов в организме, голодание.

Кетоновые тела (не более 0,1 г/л) - ацетон, ацетоуксусная кислота, бета -гидроксимасляная кислота. Опасно в отношении КЕТОАЦИДОЗА. ГИПОГЛИКЕМИЯ ведёт к судорогам, смерти. 0,1% гликогена обновляется в ткани мозга за 4 часа.

При нарушении обмена углеводов нарушается функция головного мозга.

 

Основные проявления патологии липидного обмена и возможные причины их возникновения на различных этапах обмена веществ. Образование кетоновых тел в тканях. Кетоацидоз. Биологическое значение кетоновых тел.

1. На этапе поступления жиров с пищей:

A. Обильная жирная пища на фоне ГИПОДИНАМИИ приводит к развитию АЛИМЕНТАРНОГО ОЖИРЕНИЯ.

B. Недостаточное поступление жиров или их отсутствие приводит к ГИПО- и АВИТАМИНОЗАМ A, D, Е, К. Могут развиваться ДЕРМАТИТЫ, СКЛЕРОЗ сосудов. Также нарушается процесс синтеза ПРОСТАГЛАНДИНОВ.

C. Недостаточное поступление с пищей ЛИПОТРОПНЫХ(холин, серин, инозит, витамины В12, В6) веществ приводит к развитию жировой инфильтрации тканей.

2. На этапе пищеварения.

A. При поражении печени и кишечника нарушается образование и транспорт ЛП крови.

B. При поражении печени и желчевыводяицих путей нарушается образование и экскреция желчных кислот, участвующих в переваривании жиров пищи. Развивается ЖКБ. В крови отмечается ГИПЕРХОЛЕСТЕРИНЕМИЯ.

C. Если поражается слизистая оболочка кишечника и нарушается выработка и поступление ферментов ПЖЖ, содержание жира в кале увеличивается. Если содержание жира будет превышать 50%, развивается СТЕАТОРЕЯ. Кал становится бесцветным.

D. Наиболее часто в последнее время среди населения встречается поражение бета -клеток ПЖЖ, что ведет к развитию сахарного диабета, который сопровождается интенсивным окислением в клетках белков и жиров. В крови у таких больных отмечается ГИПЕРКЕТОНЕМИЯ, ГИПЕРХОЛЕСТЕРИНЕМИЯ. Кетоновые тела и холестерин синтезируются из АЦЕТИЛ-КОА.

3.На этапе обмена холестерина наиболее частым заболеванием является АТЕРОСКЛЕРОЗ. Болезнь развивается тогда, когда между клетками тканей и ЛП крови растёт содержание АТЕРОГЕННЫХ ФРАКЦИЙ и понижается содержание ЛПВП, назначение которых удалять холестерин из клеток тканей в печень для последующего его окисления. Все ЛП за исключением ХИЛОМИКРОНОВ быстро метаболизируются. ЛПНП задерживаются в сосудистой стенке. Они содержат много ТРИГЛИЦЕРИДОВ и ХОЛЕСТЕРИНА. Они, фагоцитируясь, разрушаются ферментами ЛИЗОСОМ, за исключением холестерина. Он накапливается в клетке в большом количестве. Холестерин откладывается в межклеточном пространстве и инкапсулируется соединительной тканью. В сосудах образуются АТЕРОСКЛЕРОТИЧЕСКИЕ БЛЯШКИ.



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 850; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.248.47 (0.15 с.)