Плотность энергии электростатического поля 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Плотность энергии электростатического поля



Вопрос №1

Электрическое поле. Для объяснения природы электрических взаимодействий заряженных тел необходимо допустить наличие в окружающем заряды пространстве физического агента, осуществляющего это взаимодействие. В соответствии с теорией близкодействия, утверждающей, что силовые взаимодействия между телами осуществляются через посредство особой материальной среды, окружающей взаимодействующие тела и передающей любые изменения таких взаимодействий в пространстве с конечной скоростью, таким агентом является электрическое поле.

Электрическое поле создается как неподвижными, так и движущимися зарядами. О наличии электрического поля можно судить, прежде всего, по его способности оказывать силовое действие на электрические заряды, движущиеся и неподвижные, а также по способности индуцировать электрические заряды на поверхности проводящих нейтральных тел.

Поле, создаваемое неподвижными электрическими зарядами, называют стационарным электрическим, или электростатическим полем. Оно представляет собой частный случай электромагнитного поля, посредством которого осуществляются силовые взаимодействия между электрически заряженными телами, движущимся в общем случае произвольным образом относительно системы отсчета.

Напряженность электрического поля. Количественной характеристикой силового действия электрического поля на заряженные тела служит векторная величина E, называемая напряжённостью электрического поля.

E = F / q пр.

Она определяется отношением силы F, действующей со стороны поля на точечный пробный заряд q пр, помещенный в рассматриваемую точку поля, к величине этого заряда.

Понятие «пробный заряд» предполагает, что этот заряд не участвует в создании электрического поля и так мал, что не искажает его, т. е. не вызывает перераспределения в пространстве зарядов, создающих рассматриваемое поле. В системе СИ единицей напряженности служит 1 В / м, что эквивалентно 1 Н / Кл.

Напряженность поля точечного заряда. Используя закон Кулона найдем выражение для напряжённости электрического поля, создаваемого точечным зарядом q в однородной изотропной среде на расстоянии r от заряда:

В этой формуле r – радиус-вектор, соединяющий заряды q и q пр. Из (1.2) следует, что напряжённость E поля точечного заряда q во всех точках поля направлена радиально от заряда при q > 0 и к заряду при q < 0.

Принцип суперпозиции. Напряжённость поля, создаваемого системой неподвижных точечных зарядов q 1, q 2, q 3, ¼, qn, равна векторной сумме напряжённостей электрических полей, создаваемых каждым из этих зарядов в отдельности:
, где ri – расстояние между зарядом qi и рассматриваемой точкой поля.

Принцип суперпозиции, позволяет рассчитывать не только напряжённость поля системы точечных зарядов, но и напряженность поля в системах, где имеет место непрерывное распределение заряда. Заряд тела можно представить как сумму элементарных точечных зарядов d q.

При этом, если заряд распределен с линейной плотностью t, то d q = td l; если заряд распределен с поверхностной плотностью s, то d q = d l и d q = rd l, если заряд распределен с объёмной плотностью r.


Вопрос №2

Поток вектора электрической индукции. Поток вектора электрической индукцииопределяется аналогично потоку вектора напряженности электрического поля

dFD = D d S

В определениях потоков заметна некоторая неоднозначность, связанная с тем, что для каждой поверхности можно задать две нормали противоположного направления. Для замкнутой поверхности положительной считается внешняя нормаль.

Теорема Гаусса. Рассмотрим точечный положительный электрический заряд q, находящийся внутри произвольной замкнутой поверхности S (рис. 1.3). Поток вектора индукции через элемент поверхности dS равен

Составляющую dSD = dS cosa элемента поверхности d S в направлении вектора индукции D рассматриваем как элемент сферической поверхности радиуса r, в центре которой расположен заряд q.

Учитывая, что dSD / r2 равен элементарному телесному углу dw, под которым из точки нахождения заряда q виден элемент поверхности dS, преобразуем выражение (1.4) к виду dFD = q dw / 4p, откуда после интегрирования по всему окружающему заряд пространству, т. е. в пределах телесного угла от 0 до 4p, получим

FD = q.

Поток вектора электрической индукции через замкнутую поверхность произвольной формы равен заряду, заключенному внутри этой поверхности.

Если произвольная замкнутая поверхность S не охватывает точечный заряд q, то, построив коническую поверхность с вершиной в точке нахождения заряда, разделим поверхность S на две части: S1 и S2. Поток вектора D через поверхность S найдем как алгебраическую сумму потоков через поверхности S1 и S2:

.

Обе поверхности из точки нахождения заряда q видны под одним телесным углом w. Поэтому потоки равны

.

Поскольку при вычислении потока через замкнутую поверхность используется внешняя нормаль к поверхности, легко видеть, что поток Ф1D < 0, тогда как поток Ф2D > 0. Суммарный поток ФD = 0. Это означает, что поток вектора электрической индукции через замкнутую поверхность произвольной формы не зависит от зарядов, расположенных вне этой поверхности.

Если электрическое поле создаётся системой точечных зарядов q1, q2,¼, qn, которая охватывается замкнутой поверхностью S, то, в соответствии с принципом суперпозиции, поток вектора индукции через эту поверхность определяется как сумма потоков, создаваемых каждым из зарядов. Поток вектора электрической индукции через замкнутую поверхность произвольной формы равен алгебраической сумме зарядов, охваченных этой поверхностью:

Следует отметить, что заряды qi не обязательно должны быть точечными, необходимое условие - заряженная область должна полностью охватываться поверхностью. Если в пространстве, ограниченном замкнутой поверхностью S, электрический заряд распределен непрерывно, то следует считать, что каждый элементарный объём dV имеет заряд . В этом случае в правой части выражения алгебраическое суммирование зарядов заменяется интегрированием по объёму, заключённому внутри замкнутой поверхности S:

 

Это выражение является наиболее общей формулировкой теоремы Гаусса: поток вектора электрической индукции через замкнутую поверхность произвольной формы равен суммарному заряду в объеме, охваченном этой поверхностью, и не зависит от зарядов, расположенных вне рассматриваемой поверхности .


Вопрос №3

Потенциальная энергия заряда в электрическом поле. Работу, совершаемую силами электрического поля при перемещении положительного точечного заряда q из положения 1 в положение 2, представим как изменение потенциальной энергии этого заряда: , где W п1 и W п2 – потенциальные энергии заряда q в положениях 1 и 2. При малом перемещении заряда q в поле, создаваемом положительным точечным зарядом Q, изменение потенциальной энергии равно . При конечном перемещении заряда q из положения 1 в положение 2, находящиеся на расстояниях r 1 и r 2 от заряда Q, . Если поле создано системой точечных зарядов Q 1, Q 2,¼, Q n, то изменение потенциальной энергии заряда q в этом поле: . Приведённые формулы позволяют найти только изменение потенциальной энергии точечного заряда q, а не саму потенциальную энергию. Для определения потенциальной энергии необходимо условиться, в какой точке поля считать ее равной нулю. Для потенциальной энергии точечного заряда q, находящегося в электрическом поле, созданном другим точечным зарядом Q, получим

, где C – произвольная постоянная. Пусть потенциальная энергия равна нулю на бесконечно большом расстоянии от заряда Q (при r ® ¥), тогда постоянная C = 0 и предыдущее выражение принимает вид . При этом потенциальная энергия определяется как работа перемещения заряда силами поля из данной точки в бесконечно удаленную. В случае электрического поля, создаваемого системой точечных зарядов, потенциальная энергия заряда q:

.

Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Qi (i = 1, 2,..., n). Энергиявзаимодействия всех n зарядов определится соотношением, где rij - расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.

Потенциал электростатического поля. Поле консервативной силы может быть описано не только векторной функцией, но эквивалентное описание этого поля можно получить, определив в каждой его точке подходящую скалярную величину. Для электростатического поля такой величиной является потенциал электростатического поля, определяемый как отношение потенциальной энергии пробного заряда q к величине этого заряда, j = W п / q, откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит Вольт (1 В).

Потенциал поля точечного заряда Q в однородной изотропной среде с диэлектрической проницаемостью e:.

 

Принцип суперпозиции. Потенциал есть скалярная функция, для неё справедлив принцип суперпозиции. Так для потенциала поля системы точечных зарядов Q 1, Q 2¼, Qn имеем, где ri - расстояние от точки поля, обладающей потенциалом j, до заряда Qi. Если заряд произвольным образом распределен в пространстве, то, где r - расстояние от элементарного объема d x, d y, d z до точки (x, y, z), где определяется потенциал; V - объем пространства, в котором распределен заряд.

Потенциал и работа сил электрического поля. Основываясь на определении потенциала, можно показать, что работа сил электрического поля при перемещении точечного заряда q из одной точки поля в другую равна произведению величины этого заряда на разность потенциалов в начальной и конечной точках пути, A = q (j1 - j2).

Определение удобно записать следующим образом:


Вопрос №4

Для установления связи между силовой характеристикой электрического поля - напряжённостью и его энергетической характеристикой - потенциалом рассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: d A = q E d l, эта же работа равна убыли потенциальной энергии заряда q: d A = - d W п = - q d ,где d - изменение потенциала электрического поля на длине перемещения d l. Приравнивая правые части выражений, получаем: E d l = -d или в декартовой системе координат

Ex d x + Ey d y + Ez d z = -d , (1.8)

где Ex, Ey, Ez - проекции вектора напряженности на оси системы координат. Поскольку выражение (1.8) представляет собой полный дифференциал, то для проекций вектора напряженности имеем

откуда .

Стоящее в скобках выражение является градиентом потенциала j, т. е.

E = - grad = -Ñ .

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность E направлена в сторону убывания потенциала.

Рассмотрим электрическое поле, создаваемое положительным точечным зарядом q (рис. 1.6). Потенциал поля в точке М, положение которой определяется радиус-вектором r, равен = q / 4pe0e r. Направление радиус-вектора r совпадает с направлением вектора напряженности E, а градиент потенциала направлен в противоположную сторону. Проекция градиента на направление радиус-вектора

. Проекция же градиента потенциала на направление вектора t, перпендикулярного вектору r, равна ,

т. е. в этом направлении потенциал электрического поля является постоянной величиной ( = const).

В рассмотренном случае направление вектора r совпадает с направлением
силовых линий. Обобщая полученный результат, можно утверждать, что во всех точках кривой, ортогональной к силовым линиям, потенциал электрического поля одинаков. Геометрическим местом точек с одинаковым потенциалом является эквипотенциальная поверхность, ортогональная к силовым линиям.

При графическом изображении электрических полей часто используют эквипотенциальные поверхности. Обычно эквипотенциали проводят таким образом, чтобы разность потенциалов между любыми двумя эквипотенциальными поверхностями была одинакова. Здесь приведена двухмерная картина электрического поля. Силовые линии показаны сплошными линиями, эквипотенциали - штриховыми.

Подобное изображение позволяет сказать, в какую сторону направлен вектор напряжённости электрического поля; где напряжённость больше, где меньше; куда начнёт двигаться электрический заряд, помещённый в ту или иную точку поля. Так как все точки эквипотенциальной поверхности находятся при одинаковом потенциале, то перемещение заряда вдоль нее не требует работы. Это значит, что сила, действующая на заряд, все время перпендикулярна перемещению.

 


Вопрос №5

Если проводнику сообщить избыточный заряд, то этот заряд распределится по поверхности проводника. Действительно, если внутри проводника выделить произвольную замкнутую поверхность S, то поток вектора напряженности электрического поля через эту поверхность должен быть равен нулю. В противном случае внутри проводника будет существовать электрическое поле, что приведет к перемещению зарядов. Следовательно, для того, чтобы выполнялось условие

, суммарный электрический заряд внутри этой произвольной поверхности должен равняться нулю.

Напряженность электрического поля вблизи поверхности заряженного проводника можно определить, используя теорему Гаусса. Для этого выделим на поверхности проводника малую произвольную площадку d S и, считая ее за основание, построим на ней цилиндр с образующей d l (рис. 3.1). На поверхности проводника вектор Е направлен по нормали к этой поверхности. Поэтому поток вектора Е через боковую поверхность цилиндра из-за малости d l равен нулю. Поток этого вектора через нижнее основание цилиндра, находящееся внутри проводника, также равен нулю, так как внутри проводника электрическое поле отсутствует. Следовательно, поток вектора Е через всю поверхность цилиндра равен потоку через его верхнее основание d S': , где Еn - проекция вектора напряженности электрического поля на внешнюю нормаль n к площадке d S.

По теореме Гаусса, этот поток равен алгебраической сумме электрических зарядов, охватываемых поверхностью цилиндра, отнесенной к произведению электрической постоянной и относительной диэлектрической проницаемости среды, окружающей проводник. Внутри цилиндра находится заряд , где - поверхностная плотность зарядов. Следовательно и , т. е. напряженность электрического поля вблизи поверхности заряженного проводника прямо пропорциональна поверхностной плотности электрических зарядов, находящихся на этой поверхности.

Экспериментальные исследования распределения избыточных зарядов на проводниках различной формы показали, что распределение зарядов на внешней поверхности проводника зависит только от формы поверхности: чем больше кривизна поверхности (чем меньше радиус кривизны), тем больше поверхностная плотность заряда.

Вблизи участков с малыми радиусами кривизны, особенно около острия, из-за высоких значений напряженности происходит ионизация газа, например, воздуха. В результате одноименные с зарядом проводника ионы движутся в направлении от поверхности проводника, а ионы противоположного знака к поверхности проводника, что приводит к уменьшению заряда проводника. Это явление получило название стекания заряда.

На внутренних поверхностях замкнутых полых проводников избыточные заряды отсутствуют.

Если заряженный проводник привести в соприкосновение с внешней поверхностью незаряженного проводника, то заряд будет перераспределяться между проводниками до тех пор, пока их потенциалы не станут равными.

Если же тот же заряженный проводник касается внутренней поверхности полого проводника, то заряд передается полому проводнику полностью.
В заключение отметим еще одно явление, присущее только проводникам. Если незаряженный проводник поместить во внешнее электрическое поле, то его противоположные части в направлении поля будут иметь заряды противоположных знаков. Если, не снимая внешнего поля, проводник разделить, то разделенные части будут иметь разноименные заряды. Это явление получило название электростатической индукции.


Вопрос №8

Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводники, диэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы - носители заряда - способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.
Ограничим рассмотрение твердыми металлическими проводниками, имеющими кристаллическую структуру. Эксперименты показывают, что при очень малой разности потенциалов, приложенной к проводнику, содержащиеся в нем электроны проводимости, приходят в движение и перемещаются по объему металлов практически свободно.
В отсутствие внешнего электростатического поля электрические поля положительных ионов и электронов проводимости взаимно скомпенсированы, так что напряженность внутреннего результирующего поля равна нулю.
При внесении металлического проводника во внешнее электростатическое поле с напряженностью Е0 на ионы и свободные электроны начинают действовать кулоновские силы, направленные в противоположные стороны. Эти силы вызывают смещение заряженных частиц внутри металла, причем в основном смещаются свободные электроны, а положительные ионы, находящиеся в узлах кристаллической решетки, практически не меняют своего положения. В результате внутри проводника возникает электрическое поле с напряженностью Е'.
Смещение заряженных частиц внутри проводника прекращается тогда, когда суммарная напряженность поля Е в проводнике, равная сумме напряженностей внешнего и внутреннего полей, станет равной нулю:

Представим выражение, связывающее напряженность и потенциал электростатического поля, в следующем виде:

где Е - напряженность результирующего поля внутри проводника; n - внутренняя нормаль к поверхности проводника. Из равенства нулю результирующей напряженности Е следует, что в пределах объема проводника потенциал имеет одно и то же значение: .
Полученные результаты позволяют сделать три важных вывода:
1. Во всех точках внутри проводника напряженность поля , т. е. весь объем проводника эквипотенциален.
2. При статическом распределении зарядов по проводнику вектор напряженности Е на его поверхности должен быть направлен по нормали к поверхности , в противном случае под действием касательной к поверхности проводника компоненты напряженности заряды должны перемещаться по проводнику.
3. Поверхность проводника также эквипотенциальна, так как для любой точки поверхности


Вопрос №10

Если два проводника имеют такую форму, что создаваемое ими электрическое поле сосредоточено в ограниченной области пространства, то образованная ими система носит название конденсатора, а сами проводники называют обкладками конденсатора.
Сферический конденсатор. Два проводника, имеющие форму концентрических сфер с радиусами R 1 и R 2 (R 2 > R 1), образуют сферический конденсатор. Используя теорему Гаусса, легко показать, что электрическое поле существует только в пространстве между сферами. Напряженность этого поля ,

где q - электрический заряд внутренней сферы; - относительная диэлектрическая проницаемость среды, заполняющей пространство между обкладками; r - расстояние от центра сфер, причем R 1 r R 2. Разность потенциалов между обкладками и емкость сферического конденсатора .

Цилиндрический конденсатор представляет собой два проводящих коаксиальных цилиндра радиусами R 1 и R 2 (R 2 > R 1). Пренебрегая краевыми эффектами на торцах цилиндров и считая, что пространство между обкладками заполнено диэлектрической средой с относительной проницаемостью , напряженность поля внутри конденсатора можно найти по формуле: ,

где q - заряд внутреннего цилиндра; h - высота цилиндров (обкладок); r - расстояние от оси цилиндров. Соответственно, разность потенциалов между обкладками цилиндрического конденсатора и его емкость есть . .

Плоский конденсатор. Две плоские параллельные пластины одинаковой площади S, расположенные на расстоянии d друг от друга, образуют плоский конденсатор. Если пространство между пластинами заполнено средой с относительной диэлектрической проницаемостью , то при сообщении им заряда q напряженность электрического поля между пластинами равна , разность потенциалов равна . Таким образом, емкость плоского конденсатора .
Последовательное и параллельное соединение конденсаторов.

При последовательном соединении n конденсаторов суммарная емкость системы равна

Параллельное соединение n конденсаторов образует систему, электроемкость которой можно вычислить следующим образом:

 


Вопрос №11

Энергия заряженного проводника. Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды d q, одинаковы и равны потенциалу проводника. Заряд q, находящийся на проводнике, можно рассматривать как систему точечных зарядов d q. Тогда энергия заряженного проводника

. Приняв во внимание определение емкости, можно записать

. Любое из этих выражений определяет энергию заряженного проводника.
Энергия заряженного конденсатора. Пусть потенциал обкладки конденсатора, на которой находится заряд + q, равен , а потенциал обкладки, на которой находится заряд - q, равен . Энергия такой системы

. Энергию заряженного конденсатора можно представить в виде

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает

Частное U / d равно напряженности поля в зазоре; произведение S · d представляет собой объем V, занимаемый полем. Следовательно,

Если поле однородно (что имеет место в плоском конденсаторе при расстоянии d много меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна

C учетом соотношения можно записать

В изотропном диэлектрике направления векторов D и E совпадают и
Подставим выражение , получим

Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поля Е. В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов q i на величину d r i, составляет

Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р. Следовательно, .
Вектор P связан с вектором E соотношением . Подставив это выражение в формулу для работы, получим

Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика .

Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V. Для этого нужно вычислить интеграл:

Вопрос №12

Диэлектрик, помещенный во внешнее электрическое поле, поляризуется под действием этого поля. Поляризацией диэлектрика называется процесс приобретения им отличного от нуля макроскопического дипольного момента.

Степень поляризации диэлектрика характеризуется векторной величиной, которая называется поляризованостью или вектором поляризации (P). Поляризованность определяется как электрический момент единицы объема диэлектрика,

где N - число молекул в объеме . Поляризованность P часто называют поляризацией, понимая под этим количественную меру этого процесса.

В диэлектриках различают следующие типы поляризации: электронную, ориентационную и решеточную (для ионных кристаллов).
Электронный тип поляризации характерен для диэлектриков с неполярными молекулами. Во внешнем электрическом поле положительные заряды внутри молекулы смещаются по направлению поля, а отрицательные в противоположном направлении, в результате чего молекулы приобретают дипольный момент, направленный вдоль внешнего поля

Индуцированный дипольный момент молекулы пропорционален напряженности внешнего электрического поля , где - поляризуемость молекулы. Значение поляризованности в этом случае равно , где n - концентрация молекул ; - индуцированный дипольный момент молекулы, который одинаков для всех молекул и направление которого совпадает с направлением внешнего поля.
Ориентационнный тип поляризации характерен для полярных диэлектриков. В отсутствие внешнего электрического поля молекулярные диполи ориентированы случайным образом, так что макроскопический электрический момент диэлектрика равен нулю.

 

Если поместить такой диэлектрик во внешнее электрическое поле, то на молекулу-диполь будет действовать момент сил (рис. 2.2), стремящийся ориентировать ее дипольный момент в направлении напряженности поля. Однако полной ориентации не происходит, поскольку тепловое движение стремится разрушить действие внешнего электрического поля.

Такая поляризация называется ориентационной. Поляризованность в этом случае равна , где < p > - среднее значение составляющей дипольного момента молекулы в направлении внешнего поля.
Решеточный тип поляризации характерен для ионных кристаллов. В ионных кристаллах (NaCl и т.д.) в отсутствие внешнего поля дипольный момент каждой элементарной ячейки равен нулю (рис. 2.3.а), под влиянием внешнего электрического поля положительные и отрицательные ионы смещаются в противоположные стороны (рис. 2.3.б). Каждая ячейка кристалла становится диполем, кристалл поляризуется. Такая поляризация называется решеточной. Поляризованность и в этом случае можно определить как , где - значение дипольного момента элементарной ячейки, n - число ячеек в единице объема.

Поляризованность изотропных диэлектриков любого типа связана с напряженностью поля соотношением , где - диэлектрическая восприимчивость диэлектрика.


Вопрос №13

Поляризованность среды обладает примечательным свойством: поток вектора поляризованности среды через произвольную замкнутую поверхность численно равен величине некомпенсированных "связанных" зарядов внутри этой поверхности, взятой с обратным знаком:

(1). В локальной формулировке описываемое свойство описывается соотношением

(2), где - объемная плотность "связанных" зарядов. Эти соотношения называют теоремой Гаусса для поляризованности среды (вектора поляризации) в интегральной и дифференциальной формах соответственно. Если теорема Гаусса для напряженности электрического поля является следствием закона Кулона в "полевой" форме, то теорема Гаусса для поляризованности является следствием определения этой величины.

Докажем соотношение (1), тогда соотношение (2) окажется справедливым в силу математической теоремы Остроградского-Гаусса.

Рассмотрим диэлектрик из неполярных молекул с объемной концентрацией последних, равной . Считаем, что под действием электрического поля положительные заряды сместились из положения равновесия на величину , а отрицательные - на величину . Каждая молекула приобрела электрический момент , а единичный объем приобрел электрический момент . Рассмотрим произвольную достаточно гладкую замкнутую поверхность в описываемом диэлектрике. Допустим, что поверхность проведена так, что в отсутствие электрического поля она "не пересекает" отдельные диполи, то есть положительный и отрицательный заряды, связанные с молекулярной структурой вещества, "компенсируют" друг друга.

Заметим, кстати, что соотношения (1) и (2) при и удовлетворяются тождественно.



Поделиться:


Последнее изменение этой страницы: 2017-01-23; просмотров: 361; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.212.50.220 (0.119 с.)