ТОП 10:

Механика дрифтерных порядков



Форма сетей во время лова

Сеть перпендикулярна к течению.При рассмотрении вопроса о форме ставной или плавной сети, расположенной перпендикулярно к течению, можно выделить два случая: в первом случае обе подборы сети закреплены по концам и находятся на одной вертикали (рис. 182); во втором случае сеть удерживается на месте только благодаря закреп­лению одной подборы, в данном случае нижней (рис. 183).

Для аналитического решения задачи о равновесии сети можно рас­сматривать ее сечение как гибкую нить, нагруженную силами сопро­тивления воды и собственного веса. Более простое, хотя и менее точное, решение можно получить методом последовательных приближений.

 
Рис. 4.16. Форма сети, закрепленной за обе подборы.   Рис. 4.17. Форма сети, закрепленной за нижнюю подбору.

 

Выделим полосу сети единичной длины по подборам, например 1 м. Под действием течения она подвергается некоторой деформации (рис. 4.18). Силу собственного веса учитывать не будем, а силу сопро­тивления в первом приближении определим для случая недоформированной (плоской) сети как rR=kHv2.

Вертикальные составляющие усилий t в точках за­крепления сети определим как

а форма сети будет характеризоваться углом a, при­чем (4.15)

Пользуясь таблицей элементов гибкой нити, по значению tga определим величины L/s = а и f/s = b (в нашем случае это будет HД/H и f/H, где Hд —дей­ствительная высота сети при ее выдувании течени­ем). Далее определяем действительную высоту сети Hд и стрелу ее провеса f т. е. Hд = аН и f = bН. Полученные данные являются первым приближением. Теперь учтем изменение величины r в связи с тем, что сеть изменила форму по сравнению с первоначальной. Получим r' = rQ, где Q— поправочный коэффициент для учета провеса сетей
Рис. 4.18. Сеть на течении  

 

Для рассматриваемого случая

(4.16)

Зная новое значение сопротивления полоски r', найдем новую ве­личину tga' и затем Н'Д и f. Расчет повторяем, пока последнее и пред­шествующее значения Hд станут достаточно близкими между собой.

Второй случай (крепление за одну подбору) отличается тем, что к верхнему (или нижнему) концу полоски сети приложена лишь вер­тикальная сила t, а к нижнему концу — сила t и горизонтальное усилие r. Поскольку касательная на верхнем конце вертикальна, такую полоску рассматриваем как половину фиктивной дуги, длина которой Нф. Величина tga будет

(4.17)

Дальнейшее решение, как и в первом случае, получим с помощью метода последовательных приближений.

Сеть параллельна течению.Дрифтерная сеть, располагающаяся по линии дрейфа, перекашивается в своей плоскости. При этом действительная высота сети hд становится меньше построечной высоты h0. Величину ее можно определить по формуле, предложенной А. В. Засосовым,

(4.18)

гдеhд — действительная высота сети, м; h0 — проектная высота сети,м; весв воде звена вожака, Н; R0 — сопротивление одной сети, Н.

Сопротивление всего порядка (в ньютонах) можно приближенно определить по выражению:

(4.19)

где F — площадь всех сетей порядка, м2; L —длина всего порядка, м; vДР — скорость дрейфа, м/с.

Сопротивление одной сети будет

где п — число сетей в порядке.

Усилия на вожаковый канат

Определение нагрузок на вожаковый канат.Вожаковый канат применяется обычно при работе дрифтерными сетями, аиногда и при эксплуатации порядков ставных сетей на больших глубинах. Нагруз­ка вожака Т0 (точнее ее горизонтальная проекция) рассматривается приближенно как нагрузка, равная максимальному давлению ветра R на судно. Сопротивление подводной части судна считается при этом пренебрежимо малым. Таким образом,

TO=Tcosa=R (4.20)

где a— угол с горизонтом верхнего конца в точке крепления его к судну.

Внешнее давление ветра на судно можно определить приближенно по формуле

(4.21)

где с — безразмерный коэффициент общего лобового сопротивления судна (c≈ 2); v — скорость ветра, м/с; F — произведение наибольшей ширины судна на высоту надстроек, м2; r — плотность воздуха, кг/м3.

Прочные размеры вожакового каната определятся по его разрыв­ной нагрузке Тр, которую можно представить как

TP=nT (4.22)

где п — запас прочности (в зависимости от условий эксплуатации п = 4 ÷5); Т — нагрузка, которая определяется по выражению (4.20).

Величина нагрузки на вожаке с удалением от судна равномерно уменьшается и в конце падает до нуля. Натяжение вожака в любом месте порядка

TX=TOx/L (4.22)

где L — длина всего порядка; х — расстояние от свободного конца порядка до данного места; Т0 — натяжение вожака в ближайшей к судну точке сетного порядка 0 =R).

Расчет стояночного вожака.Рассматривая стояночный вожак как тяжелую гибкую нить (цепную линию), получим величину натя­жения его верхнего конца

T=TO+qf (4.23)

где Т0 — натяжение нижнего конца стояночного вожака; q — интенсивность нагрузки каната от собственного веса (вес каждого метра в воде); f — стрела провеса стояночного вожака.

Величина f складывается из следующих величин:

f=f1+ f2+ f3+ f4

где f1+ — высота полуклюза над ватерлинией; f2 — длина верхнего поводца; f3 — высота сети; f4 — длина нижнего поводца.

Потребную длину вожака s определим как длину цепной линии, т. е.

(4.24)

где f — стрела провеса стояночного вожака.

При недостаточной длине стояночного вожака сети могут на него накрутиться, а при избыточной длине вожака часть его веса передается на первый буй порядка и даже может его потопить, за ним утонет второй буй и, в конце концов, весь порядок.

.

Вопросы для самопроверки

1. Как определяется форма сети под нагрузкой?

2. Как определяется форма сети на течении закреплённой за одну подбору?

3. Расчет нарузки на вожак дрифтерного порядка.

 


Механика ярусов

 







Последнее изменение этой страницы: 2017-01-21; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.207.240.230 (0.004 с.)