Основные правила интегрирования 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные правила интегрирования



1. Неопределённый интеграл от алгебраической суммы (или разности) конечного числа непрерывных функций равен алгебраической сумме (или разности) интегралов от этих функций:

.

2. Постоянный множитель можно выносить за знак интеграла:

, .

3. (Инвариантность формулы интегрирования)

Если , то и , где – произвольная функция, имеющая непрерывную производную.

Таблица основных интегралов


1. .

 

2. .

 

3. .

4. .

 

5. .

 

6. .

 

7. .

 

8. .

9. .

 

10. .

 

11. .

 

12. .

 

13. .

 

14. .

 


В таблице переменная интегрирования может обозначать как независимую переменную, так и функцию от независимой переменной (согласно свойству инвариантности формулы интегрирования).

Непосредственное интегрирование

Непосредственным интегрированием называется метод интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции (выражения) и применения свойств неопределенного интеграла сводится к табличному интегралу.

Примеры.

1. .

2. .

3. .

4. .

5. .

6. .

 

Интегрирование путем подведения под знак дифференциала и методом подстановки

При сведении интеграла к табличному часто используют метод интегрирования путем подведения под знак дифференциала. В данном случае используют следующую формулу:

,

где – функция, имеющая непрерывную производную на рассматриваемом промежутке.

Применяют также интегрирование методом подстановки.

Обозначим , тогда получим . Тогда

.

Подведение под знак дифференциала есть одна из реализаций метода замены переменной.

Удачная замена переменной позволяет упростить исходный интеграл, а иногда свести его даже к табличному.

Примеры. Вычислить следующие интегралы:

1. .

1 способ.

.

2 способ.

.

 

2. .

 

1 способ.

.

2 способ.

.

 

3. .

 

1 способ.

.

 

2. способ.

.

 

4. .

 

1 способ.

.

 

2 способ.

.

Метод интегрирования по частям

Пусть функции и имеют непрерывные производные на заданном интервале, тогда справедлива формула интегрирования по частям:

.

Метод интегрирования по частям целесообразно применять в тех случаях, когда последний интеграл либо проще исходного, либо ему подобен, при этом за берется та функция, которая при дифференцировании упрощается, а за берется та часть подынтегрального выражения, интеграл от которой известен или может быть найден.

Выделяют следующие типы интегралов, которые удобно вычислять методом интегрирования по частям:

1. , , , где - многочлен степени , – число.

При вычислении данных интегралов формулу применяют n раз, обозначив за .

2. , , , , .

При вычислении интегралов второго типа удобно обозначить за .

3. , , – числа.

В данном случае обозначают .

Примеры.

1.

 

2.

.

 

Иногда формулу интегрирования по частям приходится применять более одного раза.

Пример.

.

 

Интегрирование простейших рациональных дробей

1. Интегралы вида сводят к табличным заменой .

2. Интегралы вида разбиваются на сумму двух интегралов и . Первый решается заменой . А второй представляет собой табличный интеграл.

3. Интегралы вида решаются с помощью выделения полного квадрата в знаменателе

.

Аналогично решаются интегралы вида .

 

Определенный интеграл

Пусть функция определена и ограничена на и произвольное разбиение этого отрезка на элементарных отрезков. На каждом отрезке выберем точку . Тогда сумма называется интегральной суммой для функции на отрезке .

Если предел интегральной суммы при стремлении к нулю существует и конечен, то он называется определенным интегралом от функции в пределах от до и обозначается:

.

Определенный интеграл не должен зависеть от способа выбора точек и точек

Для вычисления определенного интеграла используется формула Ньютона-Лейбница:

,

где любая первообразная функции на отрезке .

Таким образом, при вычислении определенного интеграла с использованием формулы Ньютона-Лейбница сначала, используя технику нахождения неопределенного интеграла, находят первообразную для подынтегральной функции , а затем вычисляют приращение первообразной на данном отрезке.

Примеры.

1.

 

2.



Поделиться:


Последнее изменение этой страницы: 2017-01-26; просмотров: 2825; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.228.168.200 (0.024 с.)