ЗНАЕТЕ ЛИ ВЫ?

ОСНОВЫ МЕХАНИКИ ДЕФОРМИРУЕМОГО ТЕЛА



Задачи науки

Это наука о прочности и податливости (жесткости) элементов инженерных конструкций. Методами механики деформируемого тела ведутся практические расчеты и определяются надежные (прочные, устойчивые) размеры деталей машин и различ­ных строительных сооружений. Вводной, начальной частью механи­ки деформируемого тела является курс, получивший название сопротивление материалов. Основные положения сопротивления материалов опираются на законы общей механики твердого тела и прежде всего на законы статики, знание которых для изучения механики деформируемого тела является совершенно необходимым. К механике деформируемых тел относятся и другие разделы, такие, как теория упругости, теория пластичности, теория ползучести, где рассматриваются те же вопросы, что и в сопротивлении материалов, но в более полной и строгой постановке.

Сопротивление же материалов ставит своей задачей создание практически приемлемых и простых приемов расчета на прочность и жесткость типичных, наиболее часто встречающихся элементов конструкций. При этом широко используются различные приближенные методы. Необходимость довести решение каждой практической задачи до числового результата заставляет прибегать в ряде слу­чаев к упрощающим гипотезам-предположениям, которые оправдыва­ются в дальнейшем путем сопоставления расчетных данных с экспе­риментом.

 

Общий подход

Многие физические явления удобно рассмат­ривать при помощи схемы, изображенной на рисунке 13:

Рис. 13

Через X здесь обозначено некоторое воздействие (управление), подаваемое на вход системы А (машина, испытуемый образец материала и т. п.), а через Y – реакция (отклик) системы на это воздействие. Будем считать, что реакции Y снимаются с вы­хода системы А.

Под управляемой системой А условимся понимать любой объект, способный детерминированно реагировать на некоторое воздействие. Это значит, что все копии системы А при одинаковых условиях, т.е. при одинаковых воздействиях x(t), ведут себя строго оди­наково, т.е. выдают одинаковые y(t). Такой подход, конечно, явля­ется лишь некоторым приближением, так как практически невозможно получить ни две совершенно одинаковые системы, ни два одинаковых воздействия. Поэтому, строго говоря, следовало бы рассматривать не детерминированные, а вероятностные системы. Тем не менее, для ряда явлений удобно игнорировать этот очевидный факт и систему считать детерминированной, понимая все количественные соотношения между рассматриваемыми величинами в смысле соотношений между их математическими ожиданиями.

Поведение всякой детерминированной управляемой системы может быть определено некоторым соотношением, связывающим выход с входом, т.е. х с у. Это соотношение будем называть уравнением состояния системы. Символически это записывается так

,

где буква А, использованная ранее для обозначения системы может быть истолкована как некоторый оператор, позволяющий определить у(t), если задается х(t).

Введенное понятие о детерминированной системе с входом и выходом является весьма общим. Вот некоторые примеры таких сис­тем: идеальный газ, характеристики которого связаны уравнением Менделеева-Клапейрона, электрическая схема, подчиняющаяся тому или иному дифференциальному уравнению, лопатка паровой или газовой турбины, деформирующаяся во времени, действующими на нее силами и т. д. Нашей целью не является изучение произвольной управляемой системы, и поэтому в процессе изложения мы будем вводить необходимые дополнительные предположения, которые, ограничивая общность, позволят рассмотреть систему частного ви­да, наиболее подходящую для моделирования поведения деформируемого под нагрузкой тела.

Анализ всякой управляемой системы может быть в принципе осуществлен двумя способами. Первый из них микроскопический, основан на детальном изучении устройства системы и функционирова­ния всех образующих ее элементов. Если все это удается выполнить, то появляется возможность написать уравнение состояния всей системы, так как известно поведение каждого ее элемента и способы их взаимодействия. Так, например, кинетическая теория газов позволяет написать уравнение Менделеева-Клапейрона; знание устройства электрической цепи и всех ее характеристик дает возможность написать ее уравнения на основе законов электротех­ники (закона Ома, Кирхгофа и т. п.). Таким образом, микроскопи­ческий подход к анализу управляемой системы основан на рас­смотрении элементарных процессов, из которых складывается дан­ное явление, и в принципе способен дать прямое исчерпывающее описание рассматриваемой системы.

Однако микроподход не всегда может быть осуществлен ввиду сложного или еще не исследованного строения системы. Например, в настоящее время не представляется возможным написать урав­нение состояния деформируемого тела, как бы тщательно оно не было изучено. То же относится и к более сложным явлениям, протекающим в живом организме. В подобных случаях применяется так называемый макроскопический феноменологический (функциональный) подход, при котором не интересуются детальным устройством системы (например, микроскопическим строением деформиру­емого тела) и ее элементов, а изучают функционирование системы в целом, которое рассматривается как связь между входом и выходом. Вообще говоря, эта связь может быть произвольной. Одна­ко для каждого конкретного класса систем на эту связь наклады­ваются ограничения общего характера, а проведение некоторого минимума экспериментов может оказаться достаточным, чтобы выяснить эту связь с необходимыми подробностями.

Использование макроскопического подхода является, как уже отмечалось, во многих случаях вынужденным. Тем не менее, даже создание последовательной микротеории явления не может полностью обесценить соответствующую макротеорию, так как последняя основана на эксперименте и потому более надежна. Микротеория же при построении модели системы всегда вынуждена идти на некоторые упрощающие предположения, приводящие к различного рода неточностям. Например, все «микроскопические» уравнения состоя­ния идеального газа (уравнения Менделеева-Клапейрона, Ван-дер-Ваальса и др.) имеют неустранимые расхождения с эксперимен­тальными данными о реальных газах. Соответствующие же «макро­скопические» уравнения, основанные на этих экспериментальных данных, могут описать поведение реального газа как угодно точ­но. Более того, микроподход является таковым лишь на опреде­ленном уровне – уровне рассматриваемой системы. На уровне же элементарных частей системы он все же является макроподходом, так что микроанализ системы может рассматриваться как синтез ее составных частей, проанализированных макроскопически.

Поскольку в настоящее время микроподход еще не в силах привести к уравнению состояния деформируемого тела, естест­венно решать эту задачу макроскопически. Такой точки зрения и будем придерживаться в дальнейшем.

 

Перемещения и деформации

Реальное твердое тело, лишен­ное всех степеней свободы (возможности перемещаться в прост­ранстве) и находящееся под действием внешних сил, деформируется. Под деформацией понимаем изменение формы и размеров те­ла, связанное с перемещением отдельных точек и элементов тела. В сопротивлении материалов рассматриваются только такие пере­мещения.

Различают линейные и угловые перемещения отдельных точек и элементов тела. Этим перемещениям соответствуют линейные и уг­ловые деформации (относительное удлинение и относительный сдвиг).

Деформации делятся на упругие, исчезающие после снятия нагрузки, и остаточные.

Гипотезы о деформируемом теле. Упругие деформации обыч­но (во всяком случае, в конструкционных материалах, таких, как металлы, бетон, дерево и др.) незначительны, поэтому принимаются следующие упрощающие положения:

1. Принцип начальных размеров. В соответствии с ним принима­ется, что уравнения равновесия для деформируемого тела могут быть составлены без учета изменения формы и размеров тела, т.е. как для абсолютно твердого тела.

2. Принцип независимости действия сил. В соответствии с ним, если к телу приложена система сил (несколько сил), то действие каждой из них можно рассматривать независимо от действия остальных сил.

 

Напряжения

Под действием внешних сил в теле возникают внутренние силы, являющиеся распределенными по сечениям тела. Для определения меры внутренних сил в каждой точке вводится понятие напряжения. Напряжение определяется как внутренняя сила, приходящаяся на единицу площади сечения тела. Пусть упруго-деформированное тело находится в состоянии равновесия под действием некоторой системы внешних сил (рис.1). Через точку (например, k), в которой хотим определить напряжение, мыс­ленно проводится произвольное сечение и отбрасывается часть тела (II) .Чтобы оставшаяся часть тела находилась в равновесии, взамен отброшенной части должны быть приложены внутренние силы. Взаимодействие двух частей тела происходит во всех точ­ках проведенного сечения, а потому внутренние силы действуют по всей площади сечения. В окрестности исследуемой точки выде­лим площадку . Равнодействующую внутренних сил на этой пло­щадке обозначим dF. Тогда напряжение в окрестности точки будет (по определению)

Н/м2.

Напряжение имеет размерность силы, деленной на площадь, Н/м2.

В данной точке тела напряжение имеет множество значений, в зависимости от направления сечений, которых через точку можно провести множество. Следовательно, говоря о напряжении, необходимо указать сечение.

Рис.14

 

В общем случае напряжение направлено под некоторым углом к сечению. Это полное напряжение можно разложить на две составляющие:

1. Перпендикулярную плоскости сечения – нормальное напряжение s.

2. Лежащую в плоскости сечения – касательное напряжение t.

Определение напряжений. Задача решается в три этапа.

1. Через рассматриваемую точку проводится сечение, в котором хотят определить напряжение. Одна часть тела отбрасывается и ее действие заменяется внутренними силами. Если все тело находится в равновесии, то и оставшаяся часть также должна нахо­диться в равновесии. Поэтому для сил, действующих на рассматриваемую часть тела, можно составить уравнения равновесия. В эти уравнения войдут как внешние, так и неизвестные внутренние си­лы (напряжения). Поэтому запишем их в виде

Первые слагаемые есть суммы проекций и суммы моментов всех внешних сил, действующих на оставшуюся после сечения часть те­ла, а вторые – суммы проекций и моментов всех внутренних сил, дейст­вующих в проведенном сечении. Как уже отмечено, в эти уравне­ния входят неизвестные внутренние силы (напряжения). Однако для их определения уравнений статики недостаточно, так как в противном случае пропадает разница между абсолютно твердым и деформируемым телом. Таким образом, задача определения напряжений является статически неопределимой.

2. Для составления дополнительных уравнений рассматриваются перемещения и деформации тела, в результате чего получают закон распределения напряжений по сечению.

3. Решая совместно уравнения статики и уравнения деформа­ций можно определить напряжения.

Силовые факторы. Условимся суммы проекций и суммы моментов внешних или внутренних сил называть силовыми факторами. Следовательно, силовые факторы в рассматриваемом сечении определяются как суммы проекций и суммы моментов всех внешних сил, расположенных по одну сторону этого сечения. Точно так же силовые факторы можно определить и по внутренним силам, действующим в рассматриваемом сечении. Силовые факторы, определенные по внешним и внутренним силам равны по величине и противоположны по знаку. Обычно в задачах бывают известны внешние силы, через которые и определяются силовые факторы, а по ним уже определяются напряжения.

Модель деформируемого тела

В сопротивлении материалов рассматривается модель деформируемого тела. Предполагается, что тело является деформируемым, сплошным и изотропным. В соп­ротивлении материалов рассматриваются преимущественно тела, имеющие форму стержней (иногда пластин и оболочек). Это объясняется тем, что во многих практических задачах схема конст­рукции приводится к прямолинейному стержню или к системе та­ких стержней (фермы, рамы).

Основные виды деформированного состояния стержней. Стержень (брус) – тело, у которого два размера малы по срав­нению с третьим (рис.15).

Рис.15

 

Рассмотрим стержень, находящийся в равновесии под действием приложенных к нему сил, как угодно расположенных в пространстве (рис.16).

Рис.16

 

Проводим сечение 1-1 и отбрасываем одну часть стержня. Рассмотрим равновесие оставшейся части. Воспользуемся пря­моугольной системой координат, за начало которой примем центр тяжести поперечного сечения. Ось X направим вдоль стержня в сторону внешней нормали к сечению, оси Y и Z – главные центральные оси сечения. Используя уравнения статики найдем силовые факторы

три силы

 

три момента или три пары сил

Таким образом, в общем случае в поперечном сечении стержня возникают шесть силовых факторов. В зависимости от характера внешних сил, действующих на стержень, возможны различные виды деформации стержня. Основными видами деформаций стержня яв­ляются растяжение, сжатие, сдвиг, кручение, изгиб. Соответственно им простейшие схемы нагружения выглядят следующим образом.

Растяжение-сжатие. Силы приложены вдоль оси стержня. Отбросив правую часть стержня, выделим силовые факторы по левым внешним силам (рис.17)

Рис.17

 

Имеем один ненулевой фактор – продольную силу F.

.

Строим диаграмму силовых факторов (эпюру).

Кручение стержня. В плоскостях торцевых сечений стерж­ня приложены две равные и противоположные пары сил с моментом Мкр, называемым крутящим моментом (рис.18).

Рис.18

 

Как видно, в поперечном сечении скручиваемого стержня действует только один силовой фактор – момент Т = F h.

Поперечный изгиб. Он вызывается силами (сосредоточен­ными и распределенными), перпендикулярными оси балки и расположенными в плоскости, проходящей через ось балки, а также парами сил, действующими в одной из главных плоскостей стержня.

Балки имеют опоры, т.е. являются несвободными телами, типичной опорой является шарнирно-подвижная опора (рис.19).

Рис.19

Иногда используется балка с одним заделанным и другим свободным концом – консольная балка (рис.20).

Рис.20

 

 

Рис.21

 

Рассмотрим определение силовых факторов на примере рис.21a. Сначала необходимо найти реакции опор RA и RB из уравнений статики. Затем можно найти все силовые факторы. Определим их в сечении с координатой х.

;

Таким образом, имеем два силовых фактора Fz и My, называемых перерезывающей силой и изгибающим моментом. Итак, перерезывающая сила в произвольном сечении балки равна алгебраической сумме проекций на ось z всех внешних сил, расположенных по одну сторону этого сечения.

Изгибающий момент в произвольном сечении балки равен алгебраической сумме моментов относительно центра тяжести се­чения всех внешних сил, расположенных по одну сторону сечения. В общем случае и .

 





Последнее изменение этой страницы: 2017-01-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.237.67.179 (0.02 с.)