Регуляция количества фермента путем регуляции скорости его синтеза и распада 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Регуляция количества фермента путем регуляции скорости его синтеза и распада



Синтез и распад ферментов, как и других белков, происходит в организме непрерывно. У взрослого здорового человека в условиях динамического равновесия процессы синтеза и распада имеют одинаковую скорость, благодаря чему общее содержание ферментов не изменяется во времени. Однако, для адаптации к изменениям внешней среды или в ответ на внутриклеточные изменения, смещается равновесие между процессами синтеза и распада ферментов. У всех живых организмов синтез ферментов (из аминокислот) и распад (до аминокислот) представляют собой разные процессы, которые катализируются разными ферментами. В этих условиях легко осуществляется независимая регуляция скорости синтеза фермента и скорости его распада.

Клетки могут синтезировать специфические ферменты в ответ на присутствие специфических низкомолекулярных индукторов, т.е. веществ, которые могут влиять на скорость синтеза фермента и оказывать существенное воздействие на регуляцию обмена веществ путем соотношения ферментов в организме. Ферменты, концентрация которых всегда постоянна и не зависит от условий, называются конститутивными. Ферменты, концентрация которых может меняться, называются адаптивными.

Превращение ферментов в активные формы

 
 

Ферментативная активность может регулироваться путем превращения неактивного профермента в активную форму. Чтобы перейти в такую форму, профермент должен подвергнуться ограниченному протеолизу, сопровождающемуся конформационными изменениями; при этом происходит либо открытие активного центра, либо его формирование.

Синтез в форме проферментов характерен для пищеварительных ферментов, а также ферментов системы свертывания крови и системы фибринолиза.

Регуляция активности ферментов путем их ковалентной модификации

Обратимое изменение каталитической активности ферментов может осуществляться путем ковалентного присоединения фосфатной группы (преобладает у млекопитающих) и ли нуклеотида (преобладает у бактерий). Ферменты, подверженные ковалентной модификации, которая сопровождается изменением их активности, называют обратимо модифицируемыми ферментами.

Обратимо модифицируемые ферменты могут находиться в двух состояниях, одно из которых характеризуется высокой, а другое - низкой каталитической эффективностью. В зависимости от конкретного случая более активным катализатором может быть либо фосфо-, либо дефосфофермент.

Таблица. Сравнительная активность обратимо модифицируемых ферментов млекопитающих (Е - дефосфофермент, ЕР - фосфофермент).

 

Фермент Состояние активности
низкая высокая
Гликогенсинтаза ЕР Е
Гликогенфосфорилаза Е ЕР

 

Фосфорилирование протекает соответственно по остаткам серина и тирозина. Фосфорилирование и дефосфорилирование катализируется протеинкиназами и протеинфосфотазами. Активность протеинкиназ регулируется с помощью белковых ингибиторов.

Аллостерическая регуляция

Последовательность реакций синтеза сложного природного соединения из простых называется анаболическим путем, а последовательность реакций его распада - катаболическим путем. Катаболические и анаболические пути одного итого же вещества не совпадают полностью. Как правило, биохимические реакции, различающиеся в катаболическом и анаболическом путях, катализируются ключевыми аллостерическими ферментами, которые называют также регуляторными. Благодаря существованию таких ферментов возможно независимое регулирование процессов синтеза и распада.

 
 

Аллостерические ферменты помимо активного центра имеют еще специфический регуляторный центр (аллостерический центр), с которым могут специфически связываться некоторые соединения, способные активировать или ингибировать ферменты (аллостерические модификаторы или эффекторы).

Аллостерические ферменты, как правило, состоят из 2-х или более субъединиц. Одна субъединица имеет активный (каталитический) центр, а другая - регуляторный. На рисунке представлена схема аллостерического ингибирования фермента:

В отсутствии аллостерического ингибитора субстрат присоединяется к активному центру и происходит реакция. Если в среде есть аллостерический ингибитор, то он присоединяется к регуляторному центру, что ведет к изменению конформации регуляторной субъединицы, а затем - каталитической субъединицы. В результате активность фермента снижается.

Кинетика аллостерических ферментов не подчиняется уравнению Михаэлиса-Ментен. Зависимость скорости реакции от концентрации субстрата носит сигмоидальный (S-образный) характер.

 
 



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 286; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.219.166 (0.006 с.)