ТОП 10:

Репликация ДНК. Репарация ДНК.



Репликация ДНК- удвоение мал-лы ДНК.

По современным представлениям в репликации ДНК у прокариот выделяют следующие этапы: 1. Релаксация суперспирализованной ДНК. Этот процесс катализируется ферментом топоизомеразой. 2. Денатурация двойной спирали ДНК.

Поскольку синтез ДНК происходит на одноцепочечнойматрице, ему должно предшествовать обязательное разделение двух цепей ДНК. Участок начала расхождения цепей называется репликационной вилкой из-за характерной Y-образной формы. Именно в этой репликационной вилке ДНК-полимеразы синтезируют дочерние молекулы ДНК.

Для того, чтобы цепи ДНК разъединились, функционирует особый фермент – ДНК-хеликаза, который связывается с инициаторнымибелками. Этот фермент движется по одиночной цепи ДНК и, встречая участок двойной спирали, он разрывает водородные связи между основаниями, разделяет цепи и продвигает репликационную вилку.

Субстратом для ДНК-полимеразы являются дезоксирибонуклеозид-трифосфаты (дНТФ), полимеризующиесяна одноцепочечной матрице.

Суть механизма коррекции заключается в том, что ДНК-полимеразы дважды проверяют соответствие каждого нуклеотида матрице: один раз перед включением его в состав растущей цепи, второй раз перед тем, как включить следующий нуклеотид. Очередная фосфодиэфирная связь синтезируется лишь в том случае, если последний нуклеотид растущей цепи ДНК образовал правильную уотсон-криковскую пару с соответствующим нуклеотидом матрицы.

По эукариотической хромосоме в каждый момент времени может двигаться независимо друг от друга множество репликационных вилок. Остановка продвижения вилки происходит только при столкновении с другой вилкой, движущейся во встречном направлении, или по достижении конца хромосомы. В результате вся ДНК хромосомы в короткий срок оказывается реплицированной.

Репарация ДНК. Механизм репарации («залечивание» повреждений ДНК) основан на том, что молекула ДНК имеет две копии генетической информации – по одной в каждой из нитей молекулы. Основной путь репарации включает три этапа:

- измененный участок поврежденной цепи ДНК распознается и удаляется с помощью ДНК-репарирующих нуклеаз. В спирали ДНК в этом месте возникает брешь;

- ДНК-полимераза и гликозилазы заполняют эту брешь, присоединяя нуклеотиды один за другим, копируя информацию с целостной нити;

- ДНК-лигаза «сшивает» разрывы и завершает восстановление молекулы.

 

11. Транскрипция.Передача информации от ДНК осуществляется посредством информационной или матричной рибонуклеиновой кислоты (мРНК). Молекула иРНК образуется на одной из цепей матричной ДНК по принципу комплементарности в ходе реакции полимеризации нуклеотидов. Транскрипцию осуществляет фермент ДНК-зависимая-РНК-полимераза. Синтез иРНК молекулами РНК-полимеразы начинается в определенных местах ДНК-проматорах, а заканчиваются на особых нуклеотидных последовательностях –терминаторах. Совокупность нуклеотидов ДНК, заключенных между троматором и терминатором назыв. транскриптоном.

Процесс транскрипции подразделяют на 4 стадии:

1)связывание РНК-полимеразы с ДНК и распознавание промотора, 2), инициация, 3) элонгация, 4) терминация.

1) после первоначального непрочного связывания с ДНК в случайном месте молекула РНК-полимеразы перемещается вдоль двойной спирали ДНК до тех пор, пока не обнаружит последовательность нуклеотидов промотора. В этом месте связывание молекулы фермента с ДНК становится более прочным.

2) Инициация транскрипции начинается с образования на промоторе предъиниционного комплекса, состоящего из РНК-полимеразы и матричной ДНК. Ппроисходитрасплетение двойной спирали ДНК и комплекс становится способен к транскрипции. Образуются первые фосфодиэфирные связи и начинается 3 стадия.

3) В 1992 г. М. Чэмберлен с сотрудниками разработали общую модель элонгации мРНК. РНК-полимераза перемещается вдоль ДНК, но присоединение нуклеотидов к растущей цепи иРНК в активном центре фермента происходит позже. В молекуле фермента имеется два сайта (участка), удерживающих растущую цепь мРНК, и два участка связывания ДНК-матрицы. Когда один сайт связывания ДНК фиксирован, другой перемещается вперед. Стадия элонгации заканчивается после достижения РНК-полимеразой терминатора транскрипции. Затем синтезированная РНК и РНК-полимераза освобождаются из транскрипционного комплекса. Только минус-цепь ДНК служит матрицей для синтеза мРНК.

Участки ДНК, несущие информацию о строении белка – экзоны, разделены неинформативными интронами. В процессе транскрипции считывается информация как с экзонов, так и с интронов. Образуется предшественник мРНК - про-мРНК. Молекулы про-мРНК претерпевают созревание – процессинг. В ядре из про-мРНК происходит вырезание интронов и объединение экзонов – сплайсинг. После этого мРНК соединяется с белком, образуя инфорсому. Она выходит через поры в ядерной оболочке в цитоплазму.мРНК высвобождается из инфорсомы и одноцепочечнаянеспирализованная молекула мРНК присоединяется к участку малой субъединицы рибосомы, который примыкает к большой субъединице. К рибосоме прикрепляется небольшой участок цепи мРНК, содержащий один кодон, состоящий из трех азотистых оснований.

12. Генетический код.

Код – это последовательность нуклеотидов, а не пар нуклеотидов. Генетический код имеет следующие свойства:

1. Генетический код читается группами по три нуклеотида, т.е. код триплетный. Каждый триплет кодирует аминокислоту, каждый триплет называется кодоном.

2. Основные закономерности организации генетического кода были открыты с помощью генетического анализа. В 1961 г. Ф. Крик и его коллеги показали, что код должен читаться неперекрывающимися триплетами с фиксированной стартовой точки.

а) неперекрывание подразумевает, что каждый кодон состоит из трех нуклеотидов и каждый последующий кодон представлен следующими тремя нуклеотидами.

б)Фиксированная стартовая точка означает, что считывание начинается на одном конце и завершается на другом; различные части кодирующей последовательности не могут считываться независимо друг от друга.

Началом трансляции любого гена является кодон AUG. В конце гена обязательно стоят кодоны UAA, UAG или UGA, которые не кодируют аминокислот и являются сигналами на окончание синтеза белка - стоп-кодоны. Для повышения надежности процесса терминациистоп-кодоны обычно дублируются. Первым при этом, как правило, выступает кодон UAA (основной терминирующий триплет), а вслед за ним на очень
близком расстоянии в той же рамке считывания следует один из запасных
терминирующих триплетов - UAG или UGA.

в) Если генетический код считывается неперекрывающимися триплетами, есть только три возможности транслирования нуклеотидной последовательности в аминокислотную, в зависимости от стартовой точки.Эти три возможности называют рамками считывания.

3. Генетический код является вырожденным, в том смысле, что одной аминокислоте может соответствовать несколько кодонов (Таблица).Однако, кодоны используются не с одинаковой частотой.

4. Генетический код универсален, в том смысле, что определённому кодону соответствует определённаяаминокислота.

13. Трансляция. Трансляция– процесс воплощения генетической информации мРНК в структуру полипептида.

Комплекс мРНК и рибосом называется полисомой. Подобно транскрипции механизм трансляции состоит из трех этапов: инициации, элонгации и терминации.

Трансляция начинается со стартового кодона АУГ. Каждую аминокислоту доставляет к полисоме транспортная РНК (тРНК).тРНК выполняет роль посредника между кодоном мРНК и аминокислотой. Молекулы тРНК узнают в цитоплазме соответствующий триплет (кодон в мРНК).тРНК, которая подходит к малой субчастице, образует связь кодон-антикодон, при этом одновременно передает свою аминокислоту в аминоацильный участок (А-участок) большой субъединице. К кодону АУГ «подходит» антикодон только той тРНК, которая переносит метионин. Поэтому прежде всего к рибосоме доставляется метионин. Затем кодон АУГ переходит на пептидильный участок большой субъединицы (Р-участок). В результате этих процессов образуется транслирующая рибосома – инициирующий комплекс.

Элонгация – это последовательное включение аминокислотных остатков в состав растущей полипептидной цепи. Каждый акт элонгации состоит из трех этапов:

- узнавание кодона, которое заключается в связывании антикодона с очередной молекулой тРНК, несущей аминокислоту, с кодоном свободного А-участка на рибосоме;

- образование пептидной связи, которое происходит лишь тогда, когда оба участка А и Р заняты молекулами тРНК. Часть большой субъединицы рибосомы – фермент пептидилтрансферазу, катализирующий образование пептидной связи;

- транслокация, где тРНК участка Р, не связанная с пептидом, покидает рибосому. Затем молекула тРНК с полипептидом переходят из А на Р-участок и, наконец, рибосома перемещается вдоль РНК на один кодон.

Терминация (окончание синтеза) происходит по команде кодонов УАА, УАГ, УГА. В природе не существует таких молекул тРНК, антикодоны которых соответствовали бы этим кодонам.

 







Последнее изменение этой страницы: 2017-01-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.225.194.144 (0.006 с.)