Моль. Эквиваленты и мольные массы эквивалентов простых и сложных веществ. Закон эквивалентов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Моль. Эквиваленты и мольные массы эквивалентов простых и сложных веществ. Закон эквивалентов.



КОНТРОЛЬНЫЕ ЗАДАНИЯ

 

Задания к контрольной работе №1

 

Моль. Эквиваленты и мольные массы эквивалентов простых и сложных веществ. Закон эквивалентов.

 

Эквивалент (Э) - это условно существующая частица вещества, которая при взаимодействии равнозначна одному иону водорода в кислотно-основных или ионообменных реакциях или одному электрону в окислительно - восстановительных реакциях.

Условная частица - это целое или доля реально существующей частицы (атома, молекулы, иона).

Число эквивалентности Z (эквивалентное число) показывает, сколько эквивалентов вещества составляют одну реальную частицу вещества.

Например, , таким образом, два эквивалента гидроксида кальция составляют одну молекул 2Э () = или иначе .

Химическое сродство

Для решения задач этого раздела рекомендуем воспользоваться таблицами 2, 3.

Первый закон термодинамики не позволяет определить, в каком направлении процесс может протекать самопроизвольно.

Критерием самопроизвольного протекания реакции в изолированной системе служит функция состояния S, названная Р. Клаузиусом энтропией. Самопроизвольные процессы могут идти только с увеличением энтропии и будут идти до тех пор, пока система не перейдет в равновесное состояние и энтропия не достигнет максимального для данных условий значения. На основе постулата Планка рассчитано абсолютное значение энтропии многих простых веществ, химических соединений и приведено в справочной литературе (при стандартных условиях). С помощью справочных данных можно рассчитать изменение энтропии, происходящее при химической реакции по следствию из закона Гесса:

;

где – стандартная энтропия вещества, n – cтехиометрические коэффициенты в уравнении реакции.

Пример 1. Определите возможность протекания реакции:

в изолированной системе.

Решение: Используя значения стандартных энтропий веществ (табл. 2) рассчитаем стандартную энтропию реакции:

= 223,0 + 188,74 – (2 · 186,7 + 0,5 · 205,03) = - 64,175Дж

В результате реакции энтропия уменьшилась и, следовательно, процесс в изолированной системе самопроизвольно протекать не может.

В природе и технике большинство химических процессов протекают в неизолированных системах, то есть в условиях теплообмена с окружающей средой. В этих системах критерием направленности процесса служит изменение термодинамических потенциалов G, F.

G – энергия Гиббса для условий p = соnst и Т = const;

F – энергия Гельмгольца для условий V = const и Т = const.

Изменение энергии Гиббса ( G) характеризует максимально полезную работу процесса и указывает на возможное самопроизвольное его протекание. Самопроизвольным является всякий процесс, в результате которого, энергия системы уменьшается ( G < 0). Когда система достигает положения равновесия, G принимает минимальное значение, а G становится равным нулю. Изменение энергии Гиббса включает в себя как энтальпийный (), так и энтропийный () факторы. Для расчета используется соотношение:

;

Термодинамические потенциалы G и F можно также рассчитать с помощью следствия из закона Гесса с использованием стандартных величин и (табл. 2).

Пример 2. Определите возможность протекания реакции:

в системе при стандартных условиях и при температуре 1000 К. Установить температуру, при которой система будет находиться в равновесии.

Решение: =

Воспользуемся результатами решения предыдущих примеров:

-57240 - 298 · (-64,175) = -38115Дж

Для приближенных расчетов можно принять:

= -57240 – 1000 · (-64,175) = 6935 Дж

При равновесии:

G = 0; = - 57240 Дж; = -64,175 Дж

T = =

Таким образом, при стандартных условиях реакция возможна, так как G < 0; при температуре 1000 К реакция самопроизвольно протекать не может G > 0; реакция протекает при Т = 892 К.

 

Контрольные вопросы

41. Вычислите изменение энтропии в результате реакции образования аммиака из азота и водорода. При расчете можно исходить из соответствующих газов. Чем можно объяснить отрицательное значение S?

42. Определите реакции, протекающей по уравнению:

Вычисления сделайте на основании стандартных теплот образования и стандартных энтропий соответствующих веществ. Возможна ли эта реакция при стандартных условиях.

43. Эндотермическая реакция взаимодействия метана с диоксидом углерода протекает по уравнению:

При какой температуре начнется реакция?

44. Вычислите стандартные значения для реакций:

и определите, какой из карбонатов обладает большей термической устойчивостью?

45. Вычислите возможность протекания при стандартных условиях реакции:

46. Вычислите изменение энергии Гиббса при для процесса:

зная и метана.

47. В каком направлении нижеприведенная реакция будет протекать самопроизвольно:

Необходимые для расчета реагирующих веществ взять из справочной литературы.

48. Определите, при какой температуре начнется реакция восстановления:

49. Образование сероводорода из простых веществ протекает по уравнению

Исходя из значений соответствующих веществ определите и

для этой реакции в стандартных условиях.

50. Вычислите возможность протекания при стандартных условиях реакции:

51. Вычислите изменение энергии Гиббса при для процесса:

,

зная и , сделать вывод о возможности протекания самопроизвольного процесса.

52. Вычислите значения , для процесса:

,

и составьте ряд термической стабильности карбонатов

53. Какие из приведенных реакций протекают самопроизвольно и являются экзотермическими:

54. Укажите, какая из двух реакций будет протекать самопроизвольно:

55. В каком направлении ниже приведенная реакция будет протекать самопроизвольно:

Рассчитать с использованием веществ.

56. На основании значений и веществ вычислите 0 для следующих процессов:

Укажите, в каком направлении эти реакции будут протекать, приближаясь к равновесию.

57. Определить стандартное изменение энтропии при для следующих реакций:

Сделать вывод о возможности самопроизвольного протекания реакций.

58. Для каких оксидов принципиально осуществима реакция восстановления водородом в стандартных условиях, выводы сделайте на основании расчета

59. Пользуясь значениями и вычислить реакций:

Сделать вывод о возможности самопроизвольного протекания реакции.

60. Реакция горения ацетилена протекает по уравнению:

Вычислите и и объясните уменьшение энтропии в результате этой реакции.

Химическая кинетика

Химическая кинетика изучает скорость химических реакций (υ), которая определяется как изменение концентрации реагирующих веществ или продуктов реакции в единицу времени в постоянном реакционном пространстве.

В общем случае υ ,

где ∆C – изменение концентрации; τ – время протекания реакции в секундах.

Скорость реакции зависит от:

1. концентрации реагирующих веществ;

2. природы реагирующих веществ;

3. температуры реакционной смеси;

4. наличия катализатора в системе.

Зависимость скорости химической реакции от концентрации определяется законом действующих масс: скорость химической реакции пропорциональна произведению концентраций реагирующих веществ в степенях, равных их стехиометрическим коэффициентам.

Математическое выражение закона действующих масс для системы аА + bB = cC + dD выглядит следующим образом:

,

где k – коэффициент пропорциональности или константа скорости, которая не зависит от концентрации, но зависит от природы реагирующих веществ, температуры и катализатора;

[А] и [В] – концентрации веществ А и В;

a, b – стехиометрические коэффициенты.

Влияние температуры на скорость химической реакции определяется правилом Вант-Гоффа: при изменении температуры на каждые 10 градусов скорость реакции изменяется в 2-4 раза.

,

где υ2 и υ1 – скорости реакций при температурах Т2 и Т1 соответственно;

γ – температурный коэффициент Вант-Гоффа, который может принимать значения от 2 до 4;

∆Т = Т2 –Т1.

Если один из реагентов находится в твердой фазе (гетерогенная система), то скорость химической реакции зависит от общей поверхности твердого вещества или от степени его дисперсности. Однако в общем случае изучение скорости реакции проводят в условиях не изменяющейся поверхности. Тогда в выражение скорости реакции входит только концентрация жидкого или газообразного компонента и не входит площадь поверхности. Например, скорость реакции между поверхностью раскаленного угля и парами воды зависит только от концентрации водяного пара

.

В системах, где одно или несколько веществ являются газами, скорость химической реакции зависит также от внешнего давления. В этом случае в выражение скорости может быть введено значение парциального давления.

Пример 1. Во сколько раз изменится скорость прямой и обратной реакций в системе , если объем газовой смеси уменьшить в три раза?

Решение: Обозначим концентрации реагирующих веществ: [SO2] = а; [O2] = b; [SO3] = с. Согласно закону действия масс скорости прямой и обратной реакции до изменения объема имеют следующие выражения:

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза, т.е. [SO2] = 3а; [O2] = 3b; [SO3] = 3с. Тогда при новых концентрациях скорости прямой и обратной реакций можно записать следующим образом:

= k (3a)2 3b = 27 k a2 b; = k1(3c)2 = 9 k c2

Отсюда = 27 k a2 b/ k a2 b = 27;

= 9 k c2/ k1 c2 = 9.

Следовательно, скорость прямой реакции увеличится в 27 раз, а обратной – только в 9 раз.

Пример 2. Вычислить, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 °С.

Решение: Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле:

υ2 = υ1∙γT/10 = υ1∙270-30/10 = υ1∙24 = 16∙υ1

Следовательно, скорость реакции при температуре 70°С больше скорости реакции при температуре 30°С в 16 раз.

 

Контрольные вопросы

61. Напишите выражение для скорости химической реакции, протекающей в гомогенной системе по уравнению А + 2В = АВ2 и определите, во сколько раз увеличится скорость этой реакции, если: а) концентрация вещества А увеличится в 2 раза; б) концентрация вещества В увеличится в 2 раза; в) концентрация обоих веществ увеличится в 2 раза.

62. Во сколько раз следует увеличить концентрацию оксида углерода (II) в системе , чтобы скорость реакции увеличилась в 4 раза?

63. Во сколько раз следует увеличить давление, чтобы скорость образования NO2 по реакции , возросла в 1000 раз?

64. Напишите выражение для скорости реакции и определите, во сколько раз увеличится скорость реакции при увеличении концентрации кислорода в 3 раза.

65. Реакция между оксидом азота (II) и хлором протекает по уравнению . Как изменится скорость реакции при увеличении: а) концентрации оксида азота в 2 раза; б) концентрации хлора в 2 раза; в) концентрации обоих веществ в 2 раза?

66. Во сколько раз увеличится константа скорости химической реакции при повышении температуры на 40°С, если γ = 3,2?

67. На сколько градусов следует повысить температуру системы, чтобы скорость протекающей в ней реакции возросла в 30 раз (γ = 2,5)?

68. При повышении температуры на 50°С скорость реакции возросла в 1200 раз. Вычислите температурный коэффициент реакции.

69. Вычислите температурный коэффициент реакции, если константа скорости ее при 120°С равна 6,7·10-2.

70. Реакция между веществами А и В выражается уравнением

А + 2В = С. Начальные концентрации соответственно равны 0,3 и 0,5 моль/л. Константа скорости равна 0,4 л2/(моль2∙с). Вычислите скорость реакции в начальный момент и в тот момент, когда концентрация вещества А уменьшилась на 0,1 моль/л.

71. Температурный коэффициент реакции равен 3. Вычислите, во сколько раз увеличится скорость реакции при увеличении температуры с 22 до 62°С?

72. Напишите математические выражения для определения скоростей следующих химических реакций, протекающих в гомогенной системе:

a) ;

б) ;

в) .

73. Напишите математические выражения для определения скоростей следующих химических реакций, протекающих в гетерогенной системе: а) ;

б) ;

в) .

74. Определите, как изменится скорость прямой реакции

, если давление в системе увеличить в 5 раз?

75. Как изменится скорость прямой реакции

, если объем газовой смеси уменьшить в 2 раза?

76. При повышении температуры на 30°С скорость химической реакции увеличилась в 64 раза. Вычислите, во сколько раз увеличится скорость этой реакции при повышении температуры на каждые 10°С.

77. Рассчитайте температурный коэффициент реакции, если при нагревании системы от 40°С до 80°С скорость возросла в 64 раза.

78. Температурный коэффициент реакции равен 3. При какой температуре следует проводить эту реакцию, чтобы скорость реакции, идущей при 100°С, уменьшилась в 27 раз?

79. Как изменится скорость прямой и обратной реакции, если объем газовой смеси увеличить в 2 раза?

80. Во сколько раз следует увеличить давление в системе

, чтобы скорость образования HI возросла в 100 раз?

 

Химическое равновесие

 

Для решения задач этого раздела рекомендуем воспользоваться литературой 6, 7, 9 и таблицей 1 ᾽᾽Стандартные энтальпии образования веществ᾽᾽.

Химические реакции бывают обратимыми и необратимыми. Для обратимых реакций характерно состояние химического равновесия.

Химическое равновесие – это такое состояние системы, при котором скорости прямой и обратной реакций равны между собой, т.е.

υпр = υобр

Равновесное состояние системы характеризуется константой химического равновесия. Так, например, для обратимой реакции

константа химического равновесия выражается следующим образом

В общем случае в обратимых химических реакциях равновесие устанавливается в тот момент, когда отношение произведения концентраций продуктов реакции, возведенных в степени, равные стехиометрическим коэффициентам, к произведению концентраций исходных веществ, также возведенных в соответствующие степени, равно постоянной величине, называемой константой равновесия.

Константа равновесия зависит от природы реагирующих веществ и от температуры.

Концентрации, при которых устанавливается равновесие, называются равновесными. Изменение внешних условий, таких как температура, концентрация, давление, приводят к нарушению равновесия в системе и переходу ее в новое равновесное состояние.

Направление смещения равновесия определяется принципом Ле Шателье: если на систему, находящуюся в равновесии, производить какое-либо внешнее воздействие, то в этой системе самопроизвольно происходят процессы, ослабляющие оказанное воздействие.

Пример 1. Куда будет смещаться равновесие при изменении температуры для системы 2NO2 ⇄ N2O4; ∆H= -57 кДж/моль?

Решение: В ходе реакции наблюдается выделение теплоты, реакция является экзотермической. В соответствии с принципом Ле Шателье равновесие для данной системы будет смещаться в сторону ослабления оказанных воздействий. Значит, при повышении температуры равновесие смещается в сторону эндотермической реакции, т.е. влево. Если же температуру системы понижать, то равновесие сместится вправо, т.е. в сторону прямой реакции.

Пример 2. В какую сторону сместится равновесие в системе:

при уменьшении концентрации иода?

Решение: По принципу Ле Шателье изменение концентрации одного из исходных веществ приводит к определенным изменениям в равновесном состоянии системы. В конкретном случае при уменьшении концентрации иода равновесие сместится в сторону его воспроизведения, т.е. в сторону обратной реакции, в результате которой из иодоводорода и будет получаться дополнительное количество иода.

Пример 3. Как сместится равновесие в системе:

, если увеличить давление?

Решение: В соответствии с принципом Ле Шателье увеличение внешнего давления вызовет такие изменения, которые приведут к уменьшению давления в системе. Так как из 4 моль газа (из четырех объемов) образуется 2 моль (два объема) аммиака, то равновесие сместится вправо, т.е. в сторону меньшего объема.

Пример 4. Константа равновесия гомогенной системы:

при 850°С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации:

[СО]исх = 3 моль/л, [Н2О]исх = 2 моль/л.

Решение: При равновесии скорость прямой и обратной реакции равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

υпр = k1[СО][Н2О]; υобр = k2[СО2][Н2];

В условии задачи даны исходные концентрации, тогда как в выражение входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрация х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей (х моль/л) СО и Н2О расходуется для образования СО2 и Н2. Следовательно, равновесные концентрации всех четырех веществ составляют:

; ; .

Зная константу равновесия, находим значение х, затем исходные концентрации всех веществ:

; ; .

Таким образом, искомые равновесные концентрации:

[СО2]р = 1,2 моль/л; [Н2]р = 1,2 моль/л; [СО]р = 3-1,2 = 1,8 моль/л; [Н2О]р = 2-1,2 = 0,8 моль/л.

 


Контрольные вопросы

81. Напишите выражение для константы равновесия следующих обратимых процессов: а)

б)

82. При синтезе аммиака равновесие установилось при следующих равновесных концентрациях веществ: [N2] = 2,5; [H2] = 1,8; [NH3] = 3,6 моль/л. Рассчитайте значение константы равновесия и исходные концентрации.

83. Как повлияет повышение давления и температуры на равновесие следующих обратимых реакций:

а) , ∆Н < 0

б) , ∆H < 0

в) , ∆H > 0

84. Используя справочные данные (табл. 1), определите, в какую сторону произойдет смещение равновесия гомогенных реакций:

и

при следующих воздействиях:

а) охлаждение системы;

б) увеличение давления.

85. Константа равновесия для реакции равна 36, а начальные концентрации водорода и иода равны по 0,02 моль/л. Вычислить равновесные концентрации водорода, иода и иодоводорода.

86. Исходные концентрации и в гомогенной системе составляют соответственно 0,5 и 0,2 моль/л. Вычислите константу равновесия, если к моменту наступления равновесия прореагировало 20% NO.

87. Почему при изменении давления смещается равновесие системы и не смещается равновесие системы ? Мотивируйте ответ, используя расчет скоростей прямой и обратной реакций до и после изменения давления. Составьте уравнения для констант равновесия обеих систем.

88. При некоторой температуре равновесие в гомогенной системе установилось при следующих концентрациях реагирующих веществ Вычислите константу равновесия и исходную концентрацию оксида азота и кислорода.

89. Константа равновесия гомогенной системы при некоторой температуре равна 0,2. Равновесные концентрации водорода и аммиака соответственно равны 0,4 и 0,15 моль/л. Вычислите исходную и равновесную концентрации азота.

90. Константа равновесия системы при постоянной температуре равна 1. Вычислите равновесные концентрации всех реагентов, если исходные концентрации составляют:

91. Равновесие гомогенной системы при Т=const

установилось при следующих концентрациях: Вычислите исходные концентрации хлороводорода и кислорода.

92. Напишите выражение для константы равновесия гетерогенной системы . Как следует изменить давление и концентрацию веществ, чтобы сместить равновесие в сторону прямой реакции?

93. Напишите выражение для константы равновесия гетерогенной системы . Что необходимо предпринять для повышения выхода оксида углерода? Как изменится скорость прямой реакции, если концентрацию диоксида углерода увеличить в 3 раза?

94. Составьте выражение для константы равновесия реакции, протекающей в закрытой системе при постоянной температуре:

. Укажите, во сколько раз изменится значение константы равновесия, если: а) концентрацию хлора увеличить в 2 раза; б) концентрацию хлороводорода увеличить в 6 раз.

95. Установите, во сколько раз уменьшится или увеличится равновесная концентрация оксида углерода в реакции: при увеличении значения равновесной концентрации диоксида углерода в 3 раза.

96. Как увеличить выход продуктов реакций

,

,

за счет изменения концентрации реагентов, давления, температуры?

97. Вычислите константу равновесия для следующей реакции , если при некоторой температуре образовалось 2,3 моль , а исходные концентрации двуокиси серы и хлора соответственно составляли 6,2 моль/ли5,5 моль/л.

98. Вычислите константу равновесия реакции , если исходные концентрации оксида углерода и хлора составляли соответственно 6 и 8 моль/л, а равновесие установилось, когда образовалось 3 моль .

99. Константа равновесия системы равна 0,35. Определите равновесные концентрации и , если исходная концентрация йодоводорода равна 2 моль/л.

100. Вычислите равновесные концентрации веществ в реакции , если константа равновесия реакции равна 1,89, а исходная концентрация

Свойства растворов

Важной физико-химической характеристикой твердых и жидких тел является давление пара, определяющее состояние равновесия между конденсированной и газообразной фазами. Чем выше давление пара, тем больше равновесие смещается в сторону процессов сублимации и испарения. Поэтому давление насыщенного пара над раствором используется для объяснения его поведения и свойств.

Понижение давления пара над раствором приводит к изменению температур кипения и замерзания по отношению к чистым растворителям. Известно, что жидкость кипит или кристаллизуется, когда давление ее насыщенного пара становится равным внешнему давлению или давлению насыщенного пара над твердой фазой, в которую она переходит. Раствор вследствие пониженного давления его паров труднее достигает точки кипения или точки кристаллизации. В связи с этим растворы кипят при более высоких и кристаллизуются при более низких температурах, чем чистые растворители. По закону Рауля: повышение температуры кипения или понижение температуры кристаллизации раствора прямо пропорционально моляльной концентрации растворенного вещества:

и

где

- моляльная концентрация, моль/г

- эбуллиоскопическая константа

- криоскопическая константа.

Закон Рауля имеет практическое значение - по изменению температуры кипения и кристаллизации определяют молекулярные веса неизвестных веществ. Преобразуем математические уравнения закона Рауля. Зная, что

получим

и .

где М – молярная масса вещества;

- масса растворителя, г;

- масса растворенного вещества, г.



Поделиться:


Последнее изменение этой страницы: 2016-12-29; просмотров: 298; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.154.171 (0.154 с.)