Электрических станций и подстанций 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электрических станций и подстанций



Общие сведения

а) Виды схем и их назначение:

Главная схема электрических соединений электростанции (подстанции) - это совокупность основного электрооборудования (генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними соединениями.

Выбор главной схемы является определяющим при проектировании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединении, монтажных схем и т. д.

На чертеже главные схемы изображаются в однолинейном исполнении, при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении.

Все элементы схемы и связи между ними изображаются в соответствии со стандартами единой системы конструкторской документации (ЕСКД). Условные графические обозначения основных элементов схем приведены в табл. 6-1.

В условиях эксплуатации наряду с принципиальной главной схемой применяются упрощенные оперативные схемы, в которых указывается только основное оборудование. Дежурный персонал каждой смены заполняет оперативную схему и вносит в неё необходимые изменения в части положения выключателей и разъединителей, происходящие во время дежурства.

При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи электроэнергии (мощности), на которой показываются основные функциональные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и полных принципиальных схем, а также для общего ознакомления с работой электроустановки.

б) Основные требования к главным схемам электроустановок:

При выборе схем электроустановок должны учитываться следующие факторы:

значение и роль электростанции или подстанции для энергосистемы. Электростанции, работающие параллельно в энергосистеме, существенно отличаются по своему назначению. Одни из них, базисные, несут основную нагрузку, другие, пиковые, работают неполные сутки во время максимальных нагрузок, третьи несут электрическую нагрузку, определяемую их тепловыми потребителями (ТЭЦ). Разное назначение электростанций определяет целесообразность применения разных схем электрических соединений даже в том случае, когда количество присоединений одно и то же.

Подстанции могут предназначаться для питания отдельных потребителей или крупного района, для связи частей энергосистемы или различных энергосистем. Роль подстанций определяет ее схему;

положение электростанции или подстанции в энергосистеме, схемы и напряжения прилегающих сетей. Шины высшего напряжения электростанций и подстанций могут быть узловыми точками энергосистемы, осуществляя объединение на параллельную работу нескольких электростанций. В этом случае через шины происходит переток мощности из одной части электросистемы в другую - транзит мощности. При выборе схем таких электроустановок в первую очередь учитывается необходимость сохранения транзита мощности.

Подстанции могут быть тупиковыми, проходными, отпаечными; схемы таких подстанций будут различными даже при одном и том же числе трансформаторов одинаковой мощности.

Схемы распредустройств 6 - 10 кВ зависят от схем электроснабжения потребителей: питание по одиночным или параллельным линиям, наличие резервных вводов у потребителей и т. п.;

категория потребителей по степени надежности электроснабжения. Все потребители с точки зрения надежности электроснабжения разделяются на три категории.

Перспектива расширения и промежуточные этапы развития электростанции, подстанции и прилегающего участка сети. Схема и компоновка распределительного устройства должны выбираться с учетом возможного увеличения количества присоединений при развитии энергосистемы. Поскольку строительство крупных электростанций ведется очередями, то при выборе схемы электроустановки учитывается количество агрегатов и линий, вводимых в первую, вторую, третью очередь и при окончательном развитии ее.

Для выбора схемы подстанции важно учесть количество линий высшего и среднего напряжения, степень их ответственности, а поэтому на различных этапах развития энергосистемы схема подстанции может быть разной.

Поэтапное развитие схемы распределительного устройства электростанции или подстанции не должно сопровождаться коренными переделками. Это возможно лишь в том случае, когда при выборе схемы учитываются перспективы ее развития.

При выборе схем электроустановок учитывается допустимый уровень токов к. з. При необходимости решаются вопросы секционирования сетей, деления электроустановки на независимо работающие части, установки специальных токоограничивающих устройств.

Из сложного комплекса предъявляемых условий, влияющих на выбор главной схемы электроустановки, можно выделить основные требования к схемам:

- надежность электроснабжения потребителей;

- приспособленность к проведению ремонтных работ;

- оперативная гибкость электрической схемы;

- экономическая целесообразность.

Надежность - свойство электроустановки, участка электрической сети или энергосистемы в целом обеспечить бесперебойное электроснабжение потребителей электроэнергией нормированного качества. Повреждение оборудования в любой части схемы по возможности не должно нарушать электроснабжение, выдачу электроэнергии в энергосистему, транзит мощности через шины. Надежность схемы должна соответствовать характеру (категории) потребителей, получающих питание от данной электроустановки.

Н а д е ж н о с т ь можно оценить частотой и продолжительностью нарушения электроснабжения потребителей и относительной величиной аварийного резерва, который необходим для обеспечения заданного уровня безаварийной работы энергосистемы и ее отдельных узлов.

П р и с п о с о б л е н н о с т ь э л е к т р о у с т а н о в к и к п р о в е д е н и ю р е м о н т ов определяется возможностью проведения ремонтов без нарушения или ограничения электроснабжения потребителей. Есть схемы, в которых для ремонта выключателя надо отключать данное присоединение на все время ремонта, в других схемах требуется лишь временное отключение отдельных присоединений для создания специальной ремонтной схемы; в третьих, ремонт выключателя производится без нарушения электроснабжения даже на короткий срок. Таким образом, приспособленность для проведения ремонтов рассматриваемой схемы можно оценить количественно частотой и средней продолжительностью отключений потребителей и источников питания для ремонтов оборудования.

О п е р а т и в н а я г и б к о с т ь электрической схемы определяется ее приспособленностью для создания необходимых эксплуатационных режимов и проведения оперативных переключений.

Наибольшая оперативная гибкость схемы обеспечивается, если оперативные переключения в ней производятся выключателями или другими коммутационными аппаратами с дистанционным приводом. Если все операции осуществляются дистанционно, а еще лучше средствами автоматики, то ликвидация аварийного состояния значительно ускоряется.

Оперативная гибкость оценивается количеством, сложностью и продолжительностью оперативных переключений.

Э к о н о м и ч е с к а я ц е л е с о о б р а з н о с т ь схемы оценивается приведенными затратами, включающими в себя затраты на сооружение установки - капиталовложения, ее эксплуатацию и возможный ущерб от нарушения электроснабжения. Подробно методика подсчета приведенных затрат изложена ниже.

в) Схемы выдачи электроэнергии на электростанциях и подстанциях:

Схема выдачи электроэнергии зависит от состава оборудования (числа генераторов, трансформаторов) и распределения нагрузки между распредустройствами (РУ) разного напряжения.

Рис. 6.1. Структурные схемы выдачи электроэнергии ТЭЦ.

 

На рис. 6.1 показаны структурные схемы выдачи электроэнергии на ТЭЦ. Такие станции обычно имеют потребителей на генераторном напряжении 6 - 10 кВ, что вызывает необходимость сооружения главного распределительного устройства (ГРУ).

Связь с энергосистемой по линиям высокого напряжения 110, 220кВ, поэтому на ТЭЦ кроме ГРУ сооружается распределительное устройство высшего напряжения (РУ ВН).

Если вблизи ТЭЦ имеются энергоемкие производства, то питание их может осуществляться по линиям 35 кВ и выше. В этом случае на ТЭЦ предусматривается распределительное устройство среднего напряжения (РУ СН) рис. 6.1, б.

При установке на ТЭЦ мощных генераторов 100, 250 МВт нецелесообразно присоединять их к ГРУ. Это привело бы к значительному увеличению токов к. з., а следовательно, к утяжелению и удорожанию всей аппаратуры ГРУ. Кроме того, известно, что мощные генераторы имеют номинальное напряжение 13,8 - 20 кВ, а питание потребителей от ГРУ осуществляется обычно на напряжении 6 - 10 кВ. Все это делает целесообразным присоединение мощных генераторов на ТЭЦ непосредственно к РУ высокого напряжения в виде блоков генератор-трансформатор (рис. 6.1, б).

Связь между распределительными устройствами разного напряжения осуществляется с помощью двух обмоточных или трех обмоточных трансформаторов (автотрансформаторов).

 

Рис. 6.2. Структурные схемы выдачи электроэнергии



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 642; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.189.177 (0.013 с.)