Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Реакции с участием гидроксильной группы.

Поиск

1. Диссоциация в водных растворах:

фенолят - ион

2. Взаимодействие с активными металлами (сходство с простыми спиртами):

3. Взаимодействие со щелочами (отличие от спиртов):

Образующиеся феноляты легко разлагаются при действии кислот. Поэтому при действии Н2СО3 (СО2 + Н2О) и др. кислот феноляты легко разлагаются и обратная реакция не возможна.

С6Н5ОNа + СО2 + Н2О ® С6Н5ОН + NаНСО3

4. Взаимодействие с галогеналканами с образованием простых эфиров:

метилфениловый эфир

5. Взаимодействие с ангидридами кислот с образованием сложных эфиров:

фенилацетат

6. Взаимодействие с солями (хлоридом железа III). Данная реакция является качественной реакцией на фенольный гидроксид

Каждый фенол дает свое характерное окрашивание в качественной реакции с FеС13:

Фенол ® Фиолетовое, Гидрохинон ® Грязно-зеленое,

Пирокатехин ® Зеленое, Пирогаллол ® Красное.

Резорцин ® Фиолетовое

6Н5ОН + FеС13 ® (С6Н5О)3Fе¯ + 3НС1

Фиолетовое окрашивание

7. Р-ция восстановления с цинковой пылью при нагревании:

С6Н5ОН + 3Н2 С6Н12 + ZnО

1.1..Р-ции по бензольному кольцу (SЕ )

Как было сказано выше, –ОН группа – ориентант I рода, облегчает реакции по бензольному кольцу, направляя атаку электрофильного реагента преимущественно в орто- и пара- положения:

1. Галогенирование фенола:

2,4,6-трибромфенол

Происходит обесцвечивание бромной воды и образование белого осадка. Эта реакция используется как качественная реакция на фенол.

2. Нитрование фенола. Под действием 20% раствора азотной кислоты на холожу фенол превращается в смесь орто- и пара- нитрофенол:

2-нитрофенол – 40% 4-нитрофенол – 10%

Для получения 2,4,6-тринитрофенола (пикриновой кислоты) фенол предварительно растворяют в концентрированной серной кислоте, а зате6м подвергают нитрованию концентрированной азотной кислотой:

пикриновая кислота

3. Сульфирование фенола:

 

4. Р-ция конденсации. При взаимодействии с формальдегидом фенол образует полимеры различного строения (линейного, разветвленного, сетчатого) – фенолформальдегидные смолы.

Фрагмент

фенолоформальдегидной

смолы

5.Р-ция гидрирования (восстановление):

 

1. Окисление. Фенолы легко окисляются под действием кислорода воздуха:

 

хинон

 

Многие биологические вещества содержат «хиноидную» систему: витамин К2 (фактор свертываемости крови), окислительно-восстановительные ферменты тканевого дыхания – убихиноны.

 

2. Фенол. Резорцин. Адреналин. Применение в медицине. Трехатомные фенолы.

 

Фенол и его производные обладают дезинфицирующим свойством.. Карболовая к-та – 3%-ный раствор фенола – для дезинфекции хирургических инструментов. В промышленности фенол используют для получения фенолоформальдегидных смол и ряда красителей.

Резорцин – используется при лечении кожных заболеваний в составе примочек или мазей.

Гидрохинон – в организме восстановительная способность замещенного гидрохинонового фрагмента делает его участником важного процесса транспоста электронов от окисляемого субстрата к кислороду.

Пирокатехин применяется для синтеза адреналина – гормона надпочечников. Адреналин является одним из важнейших регуляторов жизнедеятельности организма. Это первый гормон, который удалось получить синтетически.

Амины - Это производные аммиака NH3, где один, два или три атома Н замещены на радикал R (алифатический или ароматический).

Классификация

I. По количеству NH2 групп различают: моноамины, диамины:

СН3-СН2-NH2 NH2 – CH2 – CH2 – NH2

Этиламин Этилендиамин

II. В зависимости от числа атомов Н, замещенных на R, различают первичные, вторичные и третичные амины. NH2 – аминогруппа, –NH – иминогруппа.

СН3-СН2-NH2 – этиамин, первичный амин

СН3-СН2-NH - СН3-СН3 – диэтиламин, вторичный амин

- триэтиламин, третичный амин

III. По характеру углеводородного радикала различают:

· алифатические СН3-СН2-NH2 - этиламин

· ароматические С6Н5NH2 – аминобензол, анилин

 

Номенклатура

Рациональная – название радикала (R) + «амин»:

СН3 – СН2– СН2– NН2 СН3 – NН– СН3

Пропиламин Диметиламин

МН рассматривает гр. –NH2 как заместитель в первичных аминах и ее название ставят в приставке перед названием основной цепи (корня):

2-Аминопропан

Изомерия

Для первичных аминов – изомерия углерод-углеродной цепи и положения гр. – NH2 (1, 2); для вторичных и третичных аминов – изомерия радикала - метамерия

1) СН3 – СН2– СН2– NН2

Пропиламин Изопропиламин

2) СН3 – СН2– СН2– СН2– NН2

Бутиламин Изобутиламин

3) СН3 – СН2– СН2–NН–СН3 СН3 – СН2–NН – СН2–СН3

Метилпропиламин Диэтиламин

Физические свойства

Метиламин, диметиламин, триметиламин – газы, хорошо растворимые в воде; средние члены гомологического ряда аминов – жидкости, высшие – твердые вещ-ва.

Амины в заметных количествах образуются при гниении органических остатков, содержащих белки. Ряд аминов образуется в организме человека и животных из a-аминокислот под действием ферментов. Такие амины принято называть биогенными аминами, например, кадаверин и путресцин.

Строение молекулы амина

Связи N – H, C – N полярны, однако полярность NH связи больше, чем CN согласно различной ЭО атомов N, С, Н. Поэтому первичные и вторичные амины, подобно спиртам, склонны к образованию Н-связей.

 

Нуклеофильный и оснóвный центры

В связи с меньшей полярностью связи С – N (0,45 D) по сравнению с полярностью N – Н (1,3 D) для аминов не характерны реакции замещения гр. NН2 – и кислотные свойства.

Важнейшее свойство аминов связано с наличием свободной электронной пары у атома N и его способностью присоединять «+» частицы. С этим связано проявление аминами свойств оснований, т.е. присоединять Н+ от воды и кислот, а также вступать в р-ции алкилирования, ацилирования, выполняя при этом роль Nu.

Химические свойства

I. Оснóвные свойства

Амины более сильные основания, чем NH3. Это объясняется + I эффектом радикалов. Чем больше электронная плотность на атоме N, тем больше основность. Вторичные амины более сильные основания, чем первичные. Основность третичных аминов уменьшается, что объясняется экранирующим влиянием атома N тремя алкильными группами.

Поскольку электроотрицательность атома N меньше электроотрицательности атома О, амины образуют менее прочные ассоциаты, чем соответствующие спирты и имеют более низкие температуры кипения. Температура кипения этанола 78 оС, а этиламина – 17 оС.

1. При растворении в воде к аминам присоединяется Н+ от молекулы НОН, поэтому растворы аминов имеют щелочную реакцию:

С2Н5 H2 + HOH ® [С2Н5 H3]OH-

Гидроксидэтиламмония

2. При взаимодействии с кислотами образуются соли:

С2Н5 H2 + HС1 ® [С2Н5 H3]Сl-

Хлоридэтиламмония

Щелочи разлагают соли аминов и выделяют свободные амины:

2Н5 H3]Сl- + NaOH ® NaCl + С2Н5NH2 + H2O

Особенно сильные оснóвные свойства у четвертичных аммониевых оснований, которые по силе соответствуют щелочам:

Оснóвные свойства ароматических аминов ослаблены за счет р,p-сопряжения NH2 – группы с бензольным кольцом. Поэтому анилин образует соли только с сильными минеральными к-тами. Водный р-р анилина не изменяет окраску индикаторов.

II. Реакции алкилирования и ацилирования

В этом случае амины проявляют нуклеофильные свойства за счет электронной пары атома азота.

1. Реакция алкилирования (замещение атомов водорода в гр. NH2 на углеводородный радикал, в результате чего образуется вторичный амин):

С2Н5NH2 + СН3CI → С2Н5NH-CH3 + HCI

метилэтиламин

2. Реакция ацилирования (замещение атомов водорода в гр. NH2 на ацильный радикал):

Подобным образом алкилируется и ацилируется С6Н5NH2.

С6Н5NH2 + СН3CI → С6Н5NH-CH3 + HCI (реакция алкилирования)

С6Н5NH2 + СН3 COCI → С2Н5NH-C-CH3 + HCI (реакция ацилирования)

О

III. Реакция с альдегидом с образованием основания Шиффа:

С2Н5 – NH2 + O = – СН3 С2Н5 – N = – СН3

IV. Качественные реакции на амины (реакция с HNO2)

1) С2Н5 – NH2 + O = N – OH 2Н5 – N= N – OH] С2Н5OH

2) + HONO -NO¯

Желтый Нитрозоамины

Нитрозоамины являются канцерогенными веществами. Нитраты в организме восстанавливаются до нитритов.

3) R3N: + НNO2 ® [R3NH]+NO2-

Соль

При действии HNO2 на соли анилина образуется не фенол, а соли диазония (широко используемые в химии красителей), которые при нагревании выделяют азот N2 с образованием фенола:

6Н5 H3]Cl- + HONO ® [С6Н5 ºN]Cl- + 2Н2О

Соль диазония

6Н5 ºN]Cl- + 2Н2О N2 + HCl + С6Н5OH

V. Реакции по радикалу

Сульфаниловая кислота – важный продукт в синтезе лекарственных веществ (сульфаниламидных препаратов) и красителей. Наибольшую активность имеют производные сульфаниламидов, в которых атом Н в группе – SO2NH2 замещен на гетероцикл. Например,

сульфадиметоксин:

Сульфаниламиды, являясь антиметаболитами n-аминобензойной к-ты (ПАБК), блокируют биосинтез фолиевой к-ты (витамин Вс), необходимой для нормального развития и размножения микроорганизмов. Сульфаниламиды имеют сходные геометрические параметры с ПАБК, что позволяет им встраиваться вместо последней в синтез фолиевой к-ты.

Диамины.

Простейшим диамином является этилендиамин. Он образуется при аммонолизе 1,2-дихлорэтана.

Тетраметилендиамин (путресцин) и пентаметилендиамин (кадаверин), образуются при декарбоксилировании диаминокислот и обусловливают ядовитость гниющих белков.

Аминоспирты

Это соединения, содержащие в молекуле одновременно гр. –NН2 и –ОН. Первый член гомологического ряда

2-Аминоэтанол-1, моноэтаноламин, коламин

Коламин входит в состав сложных липидов. Производное коламина – димедрол – обладает противоаллергическим и слабым снотворным действием.

Коламин по гр. –NН2 проявляет свойства аминов и спиртов.

Р-ции, протекающие по –ОН гр: с Ме, РС15, НС1, R–C1, R–COC1; р-ции окисления и дегидратации.

1. Взаимодействие с активными металлами.

2. Взаимодействие с РCl5 и НСl (реакции SN)

3. Взаимодействие с галогеналканами:

4. Взаимодействие с ангидридами кислот:

Реакции по NH2- группе.

1. Взаимодействие с сильными кислотами приводит к образованию устойчивых солей.

гидрохлорид 2- аминоэтанола

2. Взаимодействие с водой.

3. Взаимодействие с ангидридами кислот.

4. В реакции алкилирования коламин образует метилированное производное по типу четвртичного аммониевого основания – холин – триметилоксиэтилгидроксид аммония:

В организме донором метильных групп является аминок-та метионин

Холин является составной частью фосфолипидов. Особенно его много в нервных тканях, мозге, печени, мышцах сердца, почках. Сложный эфир холина и уксусной кислоты – ацетилхолин, является посредником при передаче нервного импульса в тканях организма.

в организме образуется при ацетилировании холина с помощью ацетилкофермента А.

Вопросы для самоконтроля:

1. Классификация и номенклатура спиртов

2. Виды изомерии спиртов.

3. На основе электронного строения пропанола-1, охарактеризуйте химические свойства спиртов.

4. Применение спиртов в медицине.

5. Классификация и номенклатура фенолов. Изомерия.

6. Строение фенола, взаимное влияние бензольного кольца и гидроксильной группы.

7. Физические свойства и химические свойства фенола.

8. Фенол. Резорцин. Гидрохинон. Пирокатехин. Применение в медицине. Фенолы как антиоксиданты.

9. Классификация и изомерия аминов.

10. На основе электронного строения этиламина охарактеризуйте химические свойства аминов.

11. Какие из алифатических аминов проявляют более выраженные основные свойства и почему?

12. Строение этилендиамина.

13. Строение коламина. Как влияют функциональные группы в коламине друг на друга.

14. Ацетилхолин – сложный эфир холина и уксусной кислоты, участвует при передаче нервного возбуждения в нервных тканях, т. е. является нейромедиатором. Напишите реакцию его образования.

15. Пикриновая кислота входит в состав взрывчатых веществ. Напишите реакцию её образования.

16. Напишите реакции взаимодействия анилина с Br2, HO-NO2, HO-SO3H

 

 

Экспериментальная часть

Лабораторная работа



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 569; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.212.153 (0.007 с.)