Тема «Предел последовательности» 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема «Предел последовательности»



Задача 1. Найти предел .

Решение. Здесь неопределённость типа . Вынесем за скобки и в числителе, и в знаменателе, с целью сократить на этот множитель.

= =

Каждая из мелких дробей в числителе и знаменателе стремится к 0,

поэтому получается сумма пределов в каждом случае, и тогда

= . Ответ. .

Задача 2. Найти предел .

Решение. Здесь неопределённость типа . Вынесем за скобки и сократим самую старшую степень элемента , в прошлой задаче это была 2-я степень, а здесь 3-я.

= = = . Ответ. .

Задача 3. Найти предел .

Решение. = = .

Замечание. Если наоборот, в знаменателе была бы степень больше, чем в числителе, то ответ не 0 а .

Ответ. 0.

Задача 4. Найти предел .

Решение. Здесь неопределённость типа .

Чтобы свести к дроби, и сокращать как в прошлых примерах, надо сначала домножить на «сопряжённое» выражение, то есть такое где вместо разности сумма, это позволит использовать формулу сокращённого умножения .

= =

= .

Теперь можно сократить на первую степень :

= = = = = = 3. Ответ. 3.

Задача 5. Найти предел .

Решение. Сначала домножим на сопряжённое выражение, так как здесь есть разность, содержащая .

=

= .

Нужно сокращать на . При этом в знаменателе два множителя, можно каждый из них разделить на , тем самым весь знаменатель разделится на .

= =

= = =

= . Ответ. 1.

 

Задача 6. Найти предел .

Решение. Здесь разности нет, так что можем сразу сократить на .

В числителе при этом можно представить в виде .

= = =

= 2. Ответ. 2.

Практика 16

Тема: Пределы функций.

Задача 1. Найти предел .

Решение. Так как переменная неграниченно возрастает, то тоже влияют её старшие степени и коэффициенты перед ними.

Сократим дробь: = = = = .

Ответ. .

Задача 2. Найти предел .

Решение. Аналогично тому, как в прошлом примере, сократим на старшую степень, здесь это .

= = = = .

Ответ. .

Задача 3. Найти предел .

Решение. В этом примере надо домножить и поделить на «сопряжённое» то есть на сумму, чтобы использовать формулу .

= =

здесь числитель равен 1, знаменатель неограниченно возрастает, поэтому получается выражение типа , предел равен 0.

Ответ. 0.

Замечание. Как мы видим, методы решения примеров для последовательности () и для функции при во многом очень похожи. В одном случае дискретно увеличивается к бесконечности, а в другом непрерывно, но всё равно и там, и здесь неограниченное возрастание..

Задача 4. Найти предел .

Решение. В этом примере тоже надо домножить и поделить на «сопряжённое».

= = теперь сократим на :

В знаменателе можно представить в виде , чтобы упростить выражение в знаменателе:

= = = = . Ответ. .

Примеры, в которых .

Задача 5. Найти предел .

Решение. В этом случае стремится к числу, а не бесконечности. Получается неопределённость совсем другого типа: если в прошлых примерах было или , то здесь . Если просто подставить 1 в это выражение, получилось бы . Поэтому и нельзя просто подставить и вычислить значение, а нужно раскрывать неопределённость. Выделим множитель и в числителе, и в знаменателе, чтобы его сократить.

= = = 2.

Когда сократили, тогда уже можно просто подставить .

Ответ. 2.

Задача 6. Найти предел .

Решение. Найдём корни многочленов в числителе и знаменателе, и разложим на множители. =

= = . Сократили тот множитель, который отвечает за стремление к нулю, в числителе и знаменателе.

Ответ. .

Задача 7. Найти предел .

Решение. Разложим на множители, как и в прошлой задаче.

= = = .

Нашли корни числителя и знаменателя, разложили на множители. Сократили тот множитель, который отвечает за стремление к нулю, в числителе и знаменателе.

Ответ. .

 

(!) Обратите внимание, что в случае, когда в числителе таких множителей (стремящихся к 0) больше, чем в знаменателе, то происходит неполное сокращение, и в числителе остаётся одна из скобок, стремящихся к 0, то есть предел получается 0. Это будет видно на следующем примере.

Задача 8. Найти предел .

Решение. = = = . В числителе остался один не сокращённый множитель , остальные стремятся к константам, но уже не важно к каким, всё равно получится 0 из-за нуля в числителе.

Ответ. 0.

 

Замечание. Наоборот, если бы такой множитель остался в знаменателе, то предел был бы равен . = .

Задача 9. Найти предел .

Решение. Во-первых, если просто подставить , видно неопределённость . Это означает, что является корнем, т.е. по крайней мере, хотя бы один множитель вида и в числителе, и в знаменателе найдётся. Это облегчает поиск корней, можно обойтись даже без дискриминанта, а просто найти второй дополняющий. Когда мы сократим все , можно будет просто подставить в оставшееся выражение.

= = = = = .

Ответ. .

Задача 10. Найти предел .

Решение. Способ 1. Тот факт, что при подстановке и в числителе, и в знаменателе даёт значение 0, говорит о том, что множитель присутствует хотя бы один раз. Поэтому найти корни можно даже без дискриминанта.

= = = = = .

Способ 2. (Лопиталя).

= = = = = .

Ответ. .

Задача 11. Найти предел .

Решение. Воспользуемся формулой разности кубов:

.

= = = 27.

Впрочем, можно сделать и методом Лопиталя:

= = = 27.

Ответ. 27.

Задача 12. Найти предел .

Решение. = = = = = 2.

Замечание. Этот пример, как и многие из рассматриваемых, можно тоже для проверки решить вторым способом (Лопиталя).

Ответ. 2.

Задача 13. Найти предел .

Решение. Здесь 3 степень в каждой части дроби, но зато мы точно знаем, что присутствует множитель ведь неопределённость .

Это облегчает поиск корней многочленов 3-й степени: мы можем сначала поделить на и останутся многочлены 2-й степени, корни которых уже можно найти через дискриминант.

Итак, =

Однако находя корни через дискриминант, обнаруживаем, что ещё раз выделяется множитель .

В числителе , корни , т.е. и 1.

В знаменателе , корни , т.е. и 9.

Получается . Значит, просто эту скобку надо сократить 2 раза, но всё равно она ведь полностью сокращается.

Получим = = = .

Замечание. 2-й способ. По методу Лопиталя здесь тоже пришлось бы дифференцировать 2 раза, из-за наличия корня кратности 2.

= .

Здесь опять получается неопределённость , поэтому дальше:

= = = = .

Ответ. .

Задача 14. Найти предел .

Решение. Сразу вынесем за скобку общий множитель и в числителе, и в знаменателе, там все остальные коэффициенты ему кратны. Затем разложим на множители.

= = =

= = .

Ответ. .

Замечание. Если с самого начала не выносить старший коэффициент, то тогда надо не забыть домножить его потом, после разложения на множители. Ведь если просто записать разложение то это равно , а вовсе не .

 

Задача 15. Найти предел .

Решение. В отличие от прошлой задачи, здесь и поэтому другой тип неопределённости, и применяется совершенно другой метод решения, несмотря на то, что функция та же самая.

= = = .

Ответ. .

Замечание. Оба этих предела (в задачах 14 и 15) можно было найти по правилу Лопиталя. Если решать таким методом, то можно вообще не задумываться о том, надо ли выносить старший коэффициент.

= = = .

= = = .

Задача 16. Найти предел .

Решение. Домножим и разделим на сопряжённое к каждой разности.

При этом соединим дугой те, которые в итоге сворачиваются в разность квадратов. Прочие множители, которые ни с чем не объединяются, вынесем в отдельную дробь, и даже в отдельный предел. Получается произведение пределов:

В одном из них нет неопределённости, а во втором преобразуем так, чтобы сократить скобку .

= = = = .

Ответ. .

Задача 17-А. Найти предел .

Задача 17-Б. Найти предел .

Решение. Сейчас на этом примере мы увидим, как может отличаться решение и ответ в зависимости от или . И в том, и в другой случае мы стараемся сократить дробь на множитель .

Если положительно, то можно представить в виде .

= = = = .

А вот если отрицательно, то надо учесть, что это , оно положительно, то есть при верно . Поэтому

= = = .

Ответы. 4 и .



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 290; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.201.37.128 (0.076 с.)