Методика взятия, фиксирования и уплотнения материала для гистологического исследования. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методика взятия, фиксирования и уплотнения материала для гистологического исследования.



Ультроструктурная организация поверхностного аппарата клетки, роль в реализации клеточных функций.

Поверхностный аппарат клетки имеет сложное строение. В основе его лежит плазматическая мембрана, с которой снаружи связан надмембранный комплекс – гликокаликс, а изнутри – опорно-сократительный аппарат гиалоплазмы.

Его основные функции определяются пограничным положением и включают:
1) барьерную (разграничительную) функцию;
2) функцию распознавания других клеток и компонентов межклеточного вещества;
3) рецепторную функцию, включая взаимодействие с сигнальными молекулами (гормоны, медиаторы и т.п.);
4) транспортную функцию (Через нее происходит транспорт веществ внутрь клетки и наружу. Мембрана обладает свойством полупроницаемости);
5) функцию движения клетки посредством образования псевдо-, фило- и ламеллоподий)

Основная часть поверхностного аппарата клетки - плазматическая мембрана. Её толщина 10нм. Клеточные мембраны — важнейший компонент живого содержимого клетки — построены по общему принципу. Согласно жидкостно-мозаичной модели, предложенной в 1972 г. Николсоном и Сингером, в состав мембран входит бимолекулярный слой липидов, в который включены молекулы белков.Липиды — это водонерастворимые вещества, молекулы которых имеют два полюса, или два конца. Один конец молекулы обладает гидрофильными свойствами, его называют полярным. Другой полюс гидрофобный, или неполярный. В биологической мембране молекулы липидов двух параллельных слоев обращены друг к другу неполярными концами, а их полярные полюса остаются снаружи, образуя гидрофильные поверхности. Кроме липидов, в состав мембраны входят белки. Их можно разделить на три группы: периферические, погруженные (полуинтегральные) и пронизывающие (интегральные). Большинство белков мембраны является ферментами. Полуинтегральные белки образуют на мембране биохимический «конвейер», на котором в определенной последовательности осуществляется превращение веществ.

Положение погруженных белков в мембране стабилизируется периферическими белками. Интегральные белки обеспечивают передачу информации в двух направлениях: через мембрану в сторону клетки и обратно. Интегральные белки бывают двух типов: переносчики и каналообразующие. Последние выстилают пору, заполненную водой. Через нее осуществляется прохождение ряда растворенных неорганических веществ с одной стороны мембраны на другую.

Гликокаликс представляет собой ассоциированный с плазмолеммой гликопротеиновый комплекс, в состав которого входят различные углеводы. Углеводы образуют длинные, ветвящиеся цепочки полисахаридов, связанные с белками и липидами, входящими в состав плазмолеммы Углеводные цепи выполняют роль рецепторов. Благодаря им осуществляется межклеточное узнавание. Клетка приобретает способность специфически реагировать на воздействия извне.

Субмембранный комплекс характерен только для эукариотических клеток. Он состоит из разнообразных белковых нитевидных структур: тонких фибрилл, микрофибрилл, скелетных фибрилл и микротрубочек. Они связаны друг с другом белками и формируют опорно-сократительный аппарат клетки. Субмембранный комплекс взаимодействует с белками плазмалеммы, которые, в свою очередь, связаны с надмембранным комплексом. В результате ПАК представляет собой структурно целостную систему. Это позволяет ему выполнять важные для клетки функции: изолирующую, транспортную, каталитическую, рецепторно-сигнальную и контактную.

Ультраструктурная организация и взаимосвязи органелл метаболического аппарата клетки.

Ничего особо не нашла

Цитоплазма клетки состоит из гиалоплазмы и обязательных клеточных компонентов: органелл – мембранных, немембранных, а также специального назначения и различных видов непостоянных структур – включений. В гиалоплазме и органеллах происходят все этапы метаболических реакций, посредством которых клетка расщепляет одни малые молекулы и синтезирует другие, необходимые для её роста и функционирования. Все компоненты цитоплазмы функционально тесно взаимосвязаны и составляют единый метаболический. Метаболический аппарат клетки - совокупность ее структур, участвующих в метаболизме.
Под метаболизмом понимают постоянно происходящий в клетках живых организмов обмен веществ и энергии. В различных процессах метаболизма из простых веществ при участии ферментов синтезируются высокомолекулярные соединения, в свою очередь сложные молекулы расщепляются на более простые.Реакции биологического синтеза называются анаболическими, а их совокупность в клетке — анаболизмом, или пластическим обменом.

В клетке протекает огромное количество процессов синтеза: липидов в эндоплазматической сети, белков на рибосомах, полисахаридов в комплексе Гольджи эукариот и в цитоплазме прокариот, углеводов в пластидах растений. Структура синтезируемых макромолекул обладает видовой и индивидуальной специфичностью. Набор характерных для клетки веществ соответствует последовательности нуклеотидов ДНК, составляющих генотип. Для обеспечения реакций синтеза клетке требуются существенные затраты энергии, получаемой при расщеплении веществ.

Совокупность реакций расщепления сложных молекул на более простые носит название катаболизма (греч. katabole разрушение), или энергетического обмена. Примерами таких реакций является расщепление липидов, полисахаридов, белков и нуклеиновых кислот в лизосомах, а также простых углеводов и жирных кислот в митохондриях.

Органоиды, участвующие в ассимиляции: 1) шЭПС 2) аЭПС 3) аппарат Гольджи 4) рибосомы 5) хлоропласты (у растений)
Диссимиляция осуществляется в: 1) лизосомах (подготовительный этап) 2) в цитоплазме (гликолиз) 3) в митохондриях (аэробный этап)

Эмбриогенез амфибий.

Яйцеклетка амфибий – мезолецитальная с телолецитальным распределением желтка. Дробление – полное, неравномерное, асинхронное. После 3-го дробления получается 4 мелких клетки (микромеры) сосредоточены у анимального полюса и 4 крупных клетки (макромеры) сосредоточены у вегетативного полюса. Помимо широтных и меридиональных борозд деления возникают еще и тангенциальные борозды (они идут параллельно поверхности яйца и делят бластомеры в параллельной плоскости), т.о. стенка бластулы оказывается многослойной. Бластомеры начинают делиться асинхронно, причем клетки дна бластулы (заполненные желтком) оказываются значительно крупнее клеток крыши бластулы. Бластодерма состоит из нескольких слоев, а бластоцель (по сравнению с ланцетником) значительно уменьшен. Таким образом возникает неравномерная многослойная целобластула (амфибластула).

Гаструляция происходит путем частичной инвагинации и эпиболии (см. вопрос 21). На вегетативную половину зародыша «наползают» более активные клетки с анимальной половины, и в последующем внедряются внутрь зародыша. Во время гаструляции клетки размножаются слабо, в основном происходит растягивание и смещение клеток поверхностного слоя. После окончания гаструляции зародыш начинает активно расти.

Материал мезодермы закладывается во время гаструляции, причем мезодерма сразу же отрывается от первичной кишки, перемещается вперед и вентрально и расправляется между экто- и энтодермой (такой способ закладки мезодермы называется пролиферативный). Сначала в мезодерме нет никаких полостей, она представляет собой 2 мешка, потом от нее отделяются сомиты; дорсальная часть мезодермы превращается в миотомы, вентральная – в спланхнотомы. Сначала миотомы связаны со спланхнотомами сегментными ножками (дают начало органам выделения), потом расходятся.

Из миотомов развиваются мышцы туловища (из медиальной стороны миотома), склеротом (из него развивается скелетный листок – зачаток мезенхимы, из которой соответственно, развиваются все опорно-трофические ткани), дерматом (латеральная часть миотома) – становится мезенхимой, из которой развиваются глубокие слои кожи.

Хорда, нервная трубка, первичная кишка развивается примерно как у ланцетника (проходя через дорсальную губу).

 

Эмбриогенез птиц.

Яйцеклетка – полилецитальная с телолецитальным распределением желтка. Дробление – частичное (меробластическое), дискоидальное. Первые 2 борозды деления – меридианальные, потом появляются радиальные и тангенциональные борозды. В результате образуется дискобластула (бластодиск) – один слой клеток, лежащий на желтке, там где клетки прилегают к желтку – темное поле, там где не прилегают – светлое поле. В только что снесенном яйце эмбрион на стадии дискобластулы или ранней гаструлы.

Гаструляция происходит путем иммиграции и деламинации, т.е. ряд клеток просто уходит из наружного листка (иммиграция), а часть бластомеров начинает делиться таким образом, что материнская клетка остается на внешней стенке, а дочерняя клетка переходит во второй слой (деламинация).

Через 12 часов инкубации за счет миграции клеток по краям светлого поля образуется первичная полоска и гензеновский узелок, выполняющие функции губ бластопора.

В ранней гаструле различают 2 листка: эпибласт – наружный листок и гипобласт – внутренний листок.

В эпибласте имеются презумктивные зачатки кожной эктодермы, невральной пластинки, клеток хорды и клеток мезодермы; в гипобласте – только зачатки энтодермы.

Через гензеновский узелок из эпибласта инвагинируются клетки хорды, а через первичную полоску – клетки мезодермы, т.о. формируется 3-х слойный зародыш. Способ закладки мезодермы – поздняя инвагинация. Дифференцируется как у амфибий.

Дальнейшее развитие зародыша связано с образованием внезародышевых (плодных) оболочек. Оболочки образуются за счет разрастания клеток зародышевых листков вне тела зародыша. Сначала образуется туловищная складка (при участии всех 3-х листков), которая приподнимает зародыш над желтком, затем над зародышем при участии эктодермы и париетального листка мезодермы смыкаются 2 амниотические складки – образуются амнион и серозная оболочка (хорион). Чуть позже клетки энтодермы и клетки висцерального листка мезодермы формируют стенку желточного мешка и аллантоиса.

 

Эмбриогенез млекопитающих.

Яйцеклетка – вторично олиголецитальная (алицетальная). Дробление полное, неравномерное, асинхронное, в результате первых дроблений образуются 2 типа бластомеров: мелкие и светлые (дробятся быстрее) и крупные темные (дробятся медленно). Из светлых образуется трофобласт (пузырек), темные оказываются внутри пузырька и называются эмбриобласт (из них будет развиваться собственно зародыш). Трофобласт, внутри которого располагается эмбриобласт называется бластодермическим пузырьком или бластоцистой. Тип бластулы – стерробластула (т.е. эмбриобласт внутри трофобласта, полости нет). Бластоциста попадает из яйцевода в матку, где питается маточным молочком, его клетки активно растут, потом происходит первое прикрепление трофобласта к стенке матки – имплантация.

Гаструляция происходит путем деламинации (расщепления), образуется эпибласт (содержит зачатки хорды, невральной пластинки, мезодермы, эктодермы) и гипобласт (в нем зачатки только мезодермы).

Закладка мезодермы происходит также как у птиц – поздняя инвагинация через гензеновский узелок и первичную полоску.

Мезодерма дифференцируется на 3 зачатка (первичная дифференцировка): сомиты, нефрогонадотомы и спланхнотомы/боковые пластинки.

Позже (вторичная дифференцировка) – каждый сомит разделяется на:

дерматом (в последствии – сетчатый слой кожи),

миотомы (впоследствии – поперечно-полосатая скелетная мышечная ткань),

склеротомы (впоследствии – хрящевая и костная ткань скелета);

 

Спланхнотом делится на висцеральный и париетальный листки, между которыми закладывается целом.

Из нефрогонадотома закладывается эпителий выделительной и половой систем.

 

Эмбриональное развитие млекопитов также связано с формированием внезародышевых оболочек. Также как у птиц начало образования оболочек связано с образованием туловищной, а затем – амниотической складки.

Образование и дифференцировка мезодермы.

У всех животных, за исключением кишечнополостных, в связи-с гаструляцией (параллельно с ней или на следующем этапе, обусловленном гаструляцией) возникает и третий зародышевый-пластмезодерма. Это совокупность клеточных элементов, зале-гающих между эктодермой и энтодермой, т. е. в бластоцеле. Таким. образом, зародыш становится не двухслойным, а трехслойным. У высших позвоночных трехслойное строение зародышей возни­кает уже в процессе гаструляции, тогда как у низших хордовых и у всех других типов в результате собственно гаструляции обра­зуется двухслойный эмбрион.

Вопросы о путях образования мезодермы у разных животных. издавна интересовали и сравнительных анатомов, и эмбриоло­гов. В общем они могут считаться решенными, однако не в аспек­те причин соответствующих морфогенетических процессов, а в пло­скости формально-морфологического описания этих процессов.. Если отвлечься от всех разнообразных деталей формирования-мезодермы у разных животных, можно установить два принци­пиально^ разных пути возникновения ее: телобластический, свой­ственный Protostomia, и энтероцельный, характерный для Deute-rosiomia. у первичноротых во время гаструляции на границе-между эктодермой и энтодермой, по бокам бластопора, уже име­ются две большие клетки (или несколько таких клеток-телоктодерма, 2 — мезенхима, 3 — энтодерма, 4 — телобласт (А) и це-ломическая мезодерма (В)

бластов), отделяющие от себя (вследствие делений) мелкие клет­ки. Таким образом формируется средний пласт — мезодерма. Телобласты, давая новые и новые поколения клеток мезодермы, остаются на заднем конце зародыша. По этой причине такой способ образования мезодермы и называют тело­бластическим (от греч. telos — конец).

При энтероцельном способе совокупность клеток формирую­щейся мезодермы появляется в виде карманоподобных выступов первичного кишечника (выпячивание его стенок внутрь бласто-целя ). Эти выступы, внутрь которых входят участки первичной кишечной полости, обособляются or кишечника и от­деляются от него в виде мешочков. Полость мешочков превраща­ется в целом, т. е. во вторичную полость тела, целомические меш­ки могут подразделяться на сегменты.

Средний зародышевый листок, образующийся у млекопитающих путем разрастания первичной полоски в виде слоя клеток между экто- и энтодермой

Мезодерма дифференцируется на 3 части: 1) дорзальная часть получает название сомит и сегментируется на 44 сегмента;2) вентральная часть — спланхнотом расщепляется на 2 листка — париетальный прилежит к эктодерме и висцеральный — прилежит к энтодерме., они замыкаются и заключают вторичную полость тела — целом;3) участок, соединяющий сомиты и спланхнотом, — сегментная ножка, или нефрогонадотом. Нефрогонадотом сегментируется вслед за сомитами, но не до конца, в каудальном отделе ножки не разделяются и формируют диффузную нефрогенную ткань.

Каждый сомит в дальнейшем подразделяется на 3 части: склеротом — костная и хрящевая ткань осевого скелета, миотом — поперечно-полосатая скелетная мышечная ткань, и дерматом — соединительнотканная основа кожи. Нефрогонадотом даст начало эпителию выделительной и половой систем. Париетальный и висцеральный листки спланхнотома преобразуются соответственно в париетальный и висцеральный листки серозных оболочек (брюшины, плевры, перикарда), а целом — в соответствующие серозные полости тела. Помимо этого, из спланхнотома выселится большая часть клеток мезенхимы, которая даст начала соединительной и гладкомышечной ткани большинства внутренних органов. Из висцерального листка спланхнотома разовьются также корковое вещество надпочечников, миокард и эпикард сердца.

27.Эмбриональные источники образования тканей и органов.

У млекопитающих: из эктодермы образуется эпидермис кожи и нервная пластинка. Из последней развивается вся нервная система: из нервной трубки – ЦНС, из нервного гребня – периферическая(ПНС). Из миотомов формируются скелетные мышцы. Из склеротомов выделяются клетки мезенхимы, которые дают костную и хрящевую ткань, сосуды. Из материала сегментных ножек образуются мочевыделительная и половая система. Из париетального листка спланхотома формируется эпителий париетального листка плевры легких, сердечной сумки и костальной плевры; из висцерального листка – эпителий серозных оболочек органов грудной и брюшной полостей. Из энтодермы образуется эпителий, выстилающий внутреннюю поверхность пищеварительной трубки, и ее производные: органы дыхания, печень, поджелудочную железу.

 

 

Нейроглия

Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы.

Клетки глии центральной нервной системы делятся на макроглию и микроглию.

Макроглия развивается из глиобластов нервной трубки и включает: эпендимоциты, астроциты и олигодендроглиоциты.

Микроглия представляет собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки (возможно, из премоноцитов красного костного мозга). Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы.

 

Развитие сердца

стенка его подразделяется на три оболочки, или слоя: эндокард, миокард и эпикард (от греческого слова cardia — сердце), но эти оболочки не соответствуют трем оболочкам сосудистой стенки. Морфологическое значение сердечной стенки становится понятным только после рассмотрения его развития.

Развивается сердце из двух зачатков: из эндотелиальной трубки с окружающей ее мезенхимой и из так называемой миоэпикардиальной пластинки, происходящей из висцеральных листков спланхнотомов.

Первый зачаток соответствует тому зачатку, из которого развиваются и все сосуды; миоэпикардиальная же пластинка является образованием совершенно особым. Вскоре - после своей закладки она диференцируется на две части, из которых внутренняя, прилежащая к эндотелиальной трубке, превращается в зачаток сердечной мышцы, а наружная становится висцеральным листком околосердечной сумки, т.е. эпикардом.

Таким образом, внутренняя оболочка сердца, или эндокард, по своему происхождению соответствует всей стенке сосудов, а миокард и эпикард являются слоями, не имеющими аналогов в стенках сосудов.

Эпикард — это обычная серозная оболочка. Следовательно, наиболее характерной частью, отличающейся своим развитием, является сердечная мышца, образующая средний слой сердца.

Гистологическое строение сердечной стенки

Не входя в отдельные анатомические детали, мы рассмотрим только гистологическое строение сердечной стенки, изучение которой начнем с внутренней оболочки, или эндокарда.

Эндокард. Эндокард развит не одинаково в различных отделах сердца. В общем он толще в левых камерах. Наибольшей толщины и сложности эндокард достигает на левой поверхности перегородки желудочков и у выходных отверстий аорты и легочной артерии. Наиболее тонок эндокард на трабекулах.

В толстых участках эндокарда (рис. 365) различают следующие слои: 1) эндотелий с подстилающим слоем тонкофибриллярной ткани, содержащей клетки камбиального типа (1), 2) внутренний соединительнотканный слой (2); 3) и 4) мышечно-эластиновый слой (3), в котором только иногда удается различить более внутренний эластический слой с преобладанием эластиновых волокон, и более наружный мышечный слой с преобладанием гладких мышечных волокон. Все эти слои обычно лишены сосудов. Однако мелкие сосуды присутствовать могут. Как кровеносные, так и лимфатические сосуды располагаются лишь в пятом, наружном соединительнотканном слое (4), содержащем большее или меньшее количество толстых эластиновых волокон, связанных с более тонкими эластиновыми сетями миокарда.

Эндокард по своему происхождению соответствует сосудистой стенке, а перечисленные только что слои его - трем оболочкам сосудов. Первые два слоя (1, 2) соответствуют внутренней оболочке (tunica intima), оба средние слоя (3) —средней оболочке (tunica media) и, наконец, последний, пятый слой (4)— наружной облочке (tunica adventitia).

В тонких участках эндокарда сколько-нибудь отчетливого подразделения на отдельные слои провести не удается, хотя все элементы их (эластиновые волокна, соединительнотканные пучки и гладкие мышечные клетки) в эндокарде имеются всюду. У более старых субъектов в эндокарде увеличивается число эластиновых волокон.

Сердечные клапаны (как атриовентрикулярные, так и полулунные) представляют собой складки эндокарда и в нормальном состоянии не содержат сосудов. В атрио-вентрикулярных клапанах на стороне, обращенной к предсердиям, преобладают гладкие мышцы, на противоположной — эластиновые волокна.

Эпикард. Эпикард, являясь висцеральным листком перикарда, имеет строение серозной оболочки. Он очень тонок и состоит из соединительной ткани, в которой часто, особенно у сосудов, располагаются жировые дольки. Снаружи эпикард покрыт серозным эпителием, состоящим из плоских клеток полигональной формы. В эпителии эпикарда встречаются и многоядерные клетки. В эпикарде проходят крупные кровзносные и лимфатические сосуды, а также нервы.

Миокард. Сердечная мышца, образующая среднюю часть сердечной стенки, или миокард, хотя и подразделяется на отдельные части (миокард предсердий и желудочков), но по своему происхождению и тонкому строению представляет единое целое. Такое строение миокарда как нельзя более соответствует его функциональным особенностям.

Гистогенез миокарда. Миокард развивается из клеток той части стенки спланхнотомов, из которых состоят обращенные к сердечной трубке части упомянутых выше мио-эпикардиальных пластинок. Эти клетки на известной стадии развития сливаются вместе в синцитиальную плазматическую многоядерную массу, которая, однако, в экспериментальных условиях может распадаться на отдельные клетки. Ядра этого синцития размножаются, масса его увеличивается в объеме, и в нем появляются идущие по различным направлениям миофибриллы с поперечной исчерченностью (рис. 366). После того, как ушковой перетяжкой сердечная трубка разграничивается на предсердия и желудочки, миокард подразделяется на соответствующие две части, которые, однако, перешейком ушкового канала остаются связанными друг с другом. Развивающийся синцитий миокарда врастающей соединительной тканью разделяется на отдельные мышечные пучки.

В сердце, закончившем свое развитие, пучки мышечных волокон миокарда располагаются довольно сложно, причем в предсердиях более правильно, чем в желудочках. Не входя в детальное рассмотрение расположения пучков в отдельных частях сердечной мышцы, отметим, что в миокарде предсердий можно различить два слоя: общий для обоих предсердий наружный кольцевой слой и внутренний продольный. Желудочки имеют трех- и четырехслойный миокард. В наружном слое, общем для обоих желудочков, мышечные пучки образуют петлю, начинающуюся в передней верхней части правого желудочка и заканчивающуюся в задней верхней части левого желудочка. Эти мышцы на верхушке сердца и образуют фигуру, известную в анатомии под названием водоворота (vortex cordis).

Остальные слои — отдельные для каждого желудочка. В правом желудочке их два: внутренний продольный и наружный (лежит между внутренним собственным и наружным общим) с петлеобразным ходом волокон. В левом желудочке собственных слоев три и расположение их ещё более сложно, чем в правом желудочке.

 

Тимус

У большинства животных тимус (thymus) состоит из парных шейных частей, расположенных по бокам трахеи, и непарной части, расположенной в грудной полости. Принадлежит тимус к центральным органам иммунной системы, контролирующим ее формирование и полноценное функционирование. Свою регуляторную иммуногенную функцию тимус осуществляет посредством создания разнородной популяции Т-лимфоцптов, имеющих важнейшее значение в развитии как клеточного, так и гуморального иммунитета. Регулирующая функция тимуса связана и с выработкой гуморальных факторов (тимозин и др.), обладающих дистантным действием и воздействующих на лимфоциты в периферических лимфоидных органах (лимфатических узлах, селезенке).

Строение. Тимус состоит из своеобразных долек, все являющихся полностью изолированными образованиями. Совокупность всех долек органа при его реконструкции представляет сложно разветвленные лимфоэпителиальные тяжи, имеющие многочисленные боковые ответвления. При микроскопии плоскостных срезов с таких ответвлений создается рисунок изолированных долек различной формы и величины, а также долек, соединенных своими основаниями (рис. 206).

Части тимуса покрыты довольно тонкой соединительнотканной капсулой и широкими междольковыми прослойками, в которых проходят кровеносные сосуды и содержатся участки жировой ткани.нову строения долек составляет сеть из отростчатых эпителиальных клеток - эпителиоретикулоцитов.В каждой дольке различают периферическую часть - корковое вещество и центральную - мозговое вещество.Эпителиальным клеткам свойственно светлое округлое ядро, содержащее 2 - 3 ядрышка ж небольшое количество конденсированного хроматина, располагающегося на периферии, около ядерной оболочки. В цитоплазме имеются мелкие митохондрии, элементы гладкой эндоплазматической сети, комплекс Гольджи; содержатся секреторные вакуоли диаметром 0,5 - 1,5 мкм.

Одной из важных функций тимуса является уничтожение (элиминация) аутоагрессивных клонов иммунокомпетентных клеток, то есть таких клональных популяций клеток, которые распознают как чужеродные антигены естественные антигены самого организма и нападают на здоровые клетки организма. Этот отбор происходит в норме внутри тимуса на ранних стадиях созревания Т-клеток, но, помимо того, тимус также фильтрует протекающие через него кровь и лимфу и уничтожает аутоагрессивные лимфоциты. При нарушении этой функции тимуса возникают аутоиммунные заболевания.

ЛИМФАТИЧЕСКИЕ УЗЛЫ

Лимфатические узлы выполняют следующую функцию:

1) лимфоциты здесь размножаются; впоследствии они пополняют собой кровь или с оттекающей по лимфатической системе лимфой,или с венозной кровью через венозные капилляры;

2) многие вещества, поступившие с лимфой (различные частицы, пигменты, разнообразные микроорганизмы), фагоцитируются или обезвреживаются;

3) ретикулоэндотелиальные клетки узлов активно очищают лимфу от взвешенных в ней частиц;

4) фагоциты лимфатических узлов поглощают также эритроцитов и лейкоцитов, утративших свои функции;

5) при инфекционных заболеваниях здесь уничтожаются патогенные микроорганизмы и разрушаются токсины (туберкулез, чума свиней и др. ).

Развитие. Капсула, соединительнотканные перегородки и ретикулярная строма лимфатических узлов образуется из мезенхимы, локализующейся по ходу закладок лифатических и кровеносных сосудов, которые превращаются в дальнейшем в синусы. Заселение узлов Т - и В-лимфоцитами происходит после того, как начинают функционировать центральные органы кроветворения. При этом в эмбриогенезе преобладающей является их Т-популяция. Лимфоциты образуют диффузную кору, лимфатические узелки и тяжи мозгового вещества. После рождения в узелках появляются центры размножения и плазматические клетки.

Строение. Лимфатические узлы чаще всего имеют бобовидную форму. Их вогнутая часть называется воротами, в которые входят артерия и нервы и выходят вена и выносящий лимфатический сосуд. Со стороны выпуклой их части находятся приносящие лимфатические сосуды (у свиней, наоборот).

Снаружи лимфатические узлы покрыты соединительнотканной капсулой, от которой внутрь органа отходят тонкие трабекулы. В составе капсулы и трабекул имеются гладкие миоциты.

В лимфатических узлах различают три зоны: корковое и мозговое вещество, и между ними - паракортикальная зона. В корковом и мозговом веществе сосредоточены В-лимфоциты, а паракортикальная зона является Т-зависимой.

В корковом веществе на фоне диффузного расположения лимфоцитов выделяются их шарообразные скопления - лимфатические узелки, или фолликулы. Среди них различают первичные (без светлого центра) и вторичные (со светлым центром). В мозговом веществе сосредоточены скопления лимфоцитов в виде тяжей (мозговые тяжи, или шнуры).

Вторичные узелки имеют характерное для них строение: кроме светлого центра, у них есть корона в виде подковы, обращённой выпуклой частью в сторону подкапсулярного синуса. Корона образована малыми лимфоцитами, а светлый (Герминативный) центр – лифобластами, большими и средними лимфоцитами, среди которых имеются макрофаги с фагоцитированными лимфоцитами (селекция).

В паракортикальной зоне имеются вены с высоким эндотелием. Через него осуществляется миграция Т-лимфоцитов из кровотока в узел и заселение ими этой зоны.

В мозговых тяжах происходит преобразование активированных В-лимфоцитов в антителообразующие клетки (плазмоциты).

Микроокружение во всех зонах составляют ретикулярные клетки, макрофаги и интердигитирующие клетки. При этом, полагают, что интердигитирующие клетки являются ни чем иным, как эпидермальными макрофагами (клетками Лангерганса).

 

66. Селезенка

периферический и самый крупный Орган иммунной системы, Располагающийся по ходу кровеносных сосудов. К ее основ­ным Функциям Относятся:

1 Участие в формировании гуморального и клеточного иммуни­тета, задержка антигенов, циркулирующих в крови;

2 Разрушение старых и поврежденных эритроцитов и тромбо­цитов;

3 Депонирование крови и накопление тромбоцитов (до 1/3 обще­го их числа в организме).

Покрыта Брюшиной и капсулой из плотной соединительной ткани, содержащей гладкомышечные клетки. От капсулы вглубь органа отхо­дят Трабекулы, Анастомозирующие друг с другом. Паренхима (пульпа) Включает два отдела с разными функциями: Белую иКрасную пульпу

Белая пульпа (около 20% объема органа) представлена лимфоидной тканью, расположенной по ходу артерий, и включает (1) лимфа­тические узелки, (2) периартериальные лимфатические влагали­ща (ПАЛВ) И (3) маргинальную зону. К ее Функциям Отно­сят обеспечение; (а) улавливания из крови антигенов, (б) взаимодейст­вия лимфоцитов с антигенами, антиген-представляющими клетками и друг с другом, (в) начальных этапов антиген-зависимой пролифера­ции и дифференцировки.

(1) лимфатические узелки (фолликулы, мальпигиевы тельца) Располагаются По периферии ПАЛВ И по своей структурной и Функциональной организации сходны с аналогичными образованиями в лимфатических узлах. Являются В-зависимой зоной Селезенки.

(2) Периартериальные лимфатические влагалища (ПАЛВ) Окружают Центральные артерии, Состоят из цилиндрических компактных скоплений лимфоидной ткани, содержащей лимфоциты, макрофага, ретикулярные и Антиген-представляющие интердигитиру-ющие клетки. Являются Т-зависимой зоной Селезенки.

(3) Маргинальная зона Располагается в виде тонкого слоя К периферии от ПАЛВ и узелков На границе белой и красной пульпы, рядом сМаргинальным синусом И содержит лимфоциты (преимущест­венно В-клетки), ретикулярные клетки и макрофаги. В ее наружной части накапливаются незрелые плазматические клетки, мигрирующие в красную пульпу для дозревания. Служит Местом начального поступле­ния в белую пульпу селезенки Т - и В-клеток (направляющихся в даль­нейшем в соответствующие зоны) и антигенов, которые здесь захваты­ваются макрофагами.

Красная пульпа (около 75% объема органа) включает (1) веноз­ные синусы и (2) селезеночные или пульпарные тяжи (Бильрота). К ееФункциям Относятся: (а) депонирование зрелых форменных эле­ментов крови; (б) контроль состояния и разрушение старых и повреж­денных эритроцитов и тромбоцитов; (в) фагоцитоз инородных час­тиц; (г) обеспечение дозревания лимфоидных клеток и превращения 'Моноцитов в макрофаги.

(1) венозные синусы - тонкостенные анастомозирующие со­суды диаметром 12-50 мкм неправильной формы, образующие основную | часть красной пульпы. Выстланы Эндотелиальными клетками Необыч­ной Веретеновидной (палочкообразной) формы С узкими (1-3 мкм)Ще­лями Между ними, через которые в просвет синусов из окружающих тя­жей Мигрируют форменные элементы. Снаружи эти клетки охвачены j циркулярно идущими отростками ретикулярных клеток и ретикулярны­ми волокнами; базальная мембрана имеется лишь в отдельных участках.

(2) Селезеночные (Пульпарные) Тяжи (Бильрота) -

Скопления форменных элементов крови (эритроцитов, тромбоцитов, лейкоцитов), а также макрофагов и плазматических клеток, лежащие в петлях ретикулярной ткани между синусами, в просвет которых они по­стоянно мигрируют. Старые, патологически измененные или поврежден­ные форменные элементы, (в первую очередь, эритроциты) с изменен­ными маркерами и неспособные к миграции в синус, целиком Фагоци­тируются и перевариваются макрофагами, Которые в тяжах образуются из моноцитов. Усиленное разрушение эритроцитов в селезенке может приводить к развитию Анемии.

Кровообращение в Селезенке обладает рядом особенностей, обес­печивающих выполнение ее функций. В Ворота Органа входитСелезеночная артерия, Ветви которой проникают в Трабекулы (трабекулярные артерии) и далее - в пульпу (пульпарные артерии). В пульпе адвентиция такой артерии замещается Оболочкой из лимфо­идной ткани, И артерия получает название Центральной. Центральная артерия -Мелкая, мышечного типа, по мере прохождения в белой пульпе отдает Коллатерали В виде капилляров, снабжающих лимфоидную ткань и заканчивающихся в Маргинальной зоне. Дистально цент­ральная артерия утрачивает лимфоидную оболочку и, проникая в крас­ную пульпу, разветвляется на 2-6 Кисточковых артериолы, Переходя­щие в Эллипсоидные (гильзовые) капилляры (окружены Эллисоидом или Гильзой из ретикулярной ткани, лимфоцитов и макрофагов). Они изливают кровь непосредственно в Венозные синусы (закрытое крово­обращение) Или между ними - в Тяжи красной пульпы (открытое кровообращение), Откуда она попадает в венозные синусы и далее - в Пульпарные и трабекулярные вены, Собирающиеся в Селезеночную вену.

Соотношение объема крови, направляющейся в открытую и закры­тую системы, зависит от видовой принадлежности и функционального состояния. Закрытое (быстрое) кровообращение обеспечивает транс­порт крови и насыщение тканей кислородом, открытое (медленное) - депонирование форменных элементов крови, возможность их сортиров­ки и отбора полноценных жизнеспособных форм, контакт макрофагов с форменными элементами и антигенами, внесосудистое дозревание лим­фоидных клеток макрофагов.

 

Красный костный мозг

Костный мозг выполняет ф-цию миелоидного кроветворения. Кроме того, он обладает защитными свойствами, т. к. клетки его ретикулярной ткани способны адсорбировать мелкие частички, а также продуцировать макрофаги и плазмоциты. В процессе эмбрионального развития ретикулярная ткань костного мозга разделяется на красный и желтый. Красный костный мозг – орган миелоидного кроветворения, залегает в эпифизах трубчатых костей. По строению он представляет сетчатый остов ретикулярной ткани, тесно связанный с эндотелиоподобной тканью. Между клетками ретикулярной ткани находятся в большом количестве ретикулиновые волокна, форменны



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 358; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.204.204.14 (0.105 с.)