Буквенно-цифровая маркировка 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Буквенно-цифровая маркировка



Обозначение резистора включает три элемента.
Первый элемент — цифры — номинал сопротивления в омах.
Второй элемент — буква латинского или русского алфавита — множитель (табл. 1.6).

Таблица 1.6

Буква латинская (русская) R (или Е) К (или К) М (или М) G (или Г) Т (или Т)
Множитель          

Третий элемент — буква латинского или русского алфавита — допуск (табл. 1.7).

Таблица 1.7

Буква латинская (русская) Е L R Р и В (Ж) С (У) D (Д) F (Р) G (Л) J (И) К (С) м (В) N (Ф)
Допуск, ± % 0,001 0,002 0,005 0,01 0,02 0,1 0,25 0,5            
                                   

 

 

Номинальные ряды E6, E12, E24:

E6 E12 E24   E6 E12 E24   E6 E12 E24
1,0 1,0 1,0 2,2 2,2 2,2 4,7 4,7 4,7
    1,1     2,4     5,1
  1,2 1,2   2,7 2,7   5,6 5,6
    1,3     3,0     6,2
1,5 1,5 1,5 3,3 3,3 3,3 6,8 6,8 6,8
    1,6     3,6     7,5
  1,8 1,8   3,9 3,9   8,2 8,2
    2,0     4,3     9,1

Номинальные ряды E48, E96, E192:

E48 E96 E192   E48 E96 E192   E48 E96 E192   E48 E96 E192   E48 E96 E192   E48 E96 E192
1,00 1,00 1,00 1,47 1,47 1,47 2,15 2,15 2,15 3,16 3,16 3,16 4,64 4,64 4,64 6,81 6,81 6,81
    1,01     1,49     2,18     3,20     4,70     6,90
  1,02 1,02   1,50 1,50   2,21 2,21   3,24 3,24   4,75 4,75   6,98 6,98
    1,04     1,52     2,23     3,28     4,81     7,06
1,05 1,05 1,05 1,54 1,54 1,54 2,26 2,26 2,26 3,32 3,32 3,32 4,87 4,87 4,87 7,15 7,15 7,15
    1,06     1,56     2,29     3,36     4,93     7,23
  1,07 1,07   1,58 1,58   2,32 2,32   3,40 3,40   4,99 4,99   7,32 7,32
    1,09     1,60     2,34     3,44     5,05     7,41
1,10 1,10 1,10 1,62 1,62 1,62 2,37 2,37 2,37 3,48 3,48 3,48 5,11 5,11 5,11 7,50 7,50 7,50
    1,11     1,64     2,40     3,52     5,17     7,59
  1,13 1,13   1,65 1,65   2,43 2,43   3,57 3,57   5,23 5,23   7,68 7,68
    1,14     1,67     2,46     3,61     5,30     7,77
1,15 1,15 1,15 1,69 1,69 1,69 2,49 2,49 2,49 3,65 3,65 3,65 5,36 5,36 5,36 7,87 7,87 7,87
    1,17     1,72     2,52     3,70     5,42     7,96
  1,18 1,18   1,74 1,74   2,55 2,55   3,74 3,74   5,49 5,49   8,06 8,06
    1,20     1,76     2,58     3,79     5,56     8,16
1,21 1,21 1,21 1,78 1,78 1,78 2,61 2,61 2,61 3,83 3,83 3,83 5,62 5,62 5,62 8,25 8,25 8,25
    1,23     1,80     2,64     3,88     5,69     8,35
  1,24 1,24   1,82 1,82   2,67 2,67   3,92 3,92   5,76 5,76   8,45 8,45
    1,26     1,84     2,71     3,97     5,83     8,56
1,27 1,27 1,27 1,87 1,87 1,87 2,74 2,74 2,74 4,02 4,02 4,02 5,90 5,90 5,90 8,66 8,66 8,66
    1,29     1,89     2,77     4,07     5,97     8,76
  1,30 1,30   1,91 1,91   2,80 2,80   4,12 4,12   6,04 6,04   8,87 8,87
    1,32     1,93     2,84     4,17     6,12     8,98
1,33 1,33 1,33 1,96 1,96 1,96 2,87 2,87 2,87 4,22 4,22 4,22 6,19 6,19 6,19 9,09 9,09 9,09
    1,35     1,98     2,91     4,27     6,26     9,19
  1,37 1,37   2,00 2,00   2,94 2,94   4,32 4,32   6,34 6,34   9,31 9,31
    1,38     2,03     2,98     4,37     6,42     9,42
1,40 1,40 1,40 2,05 2,05 2,05 3,01 3,01 3,01 4,42 4,42 4,42 6,49 6,49 6,49 9,53 9,53 9,53
    1,42     2,08     3,05     4,48     6,57     9,65
  1,43 1,43   2,10 2,10   3,09 3,09   4,53 4,53   6,65 6,65   9,76 9,76
    1,45     2,13     3,12     4,59     6,73     9,88

 

КОНДЕНСАТОРЫ

В основу классификации конденсаторов положено деление их на группы по виду применяемого диэлектрика и по конструктивным особенностям, определяющим использование их в конкретных цепях аппаратуры (табл. 1). Вид диэлектрика определяет основные элект­рические параметры конденсаторов: сопротивление изо­ляции, стабильность емкости, потери и др. Конструк­тивные особенности определяют характер их приме­нения: помехоподавляющие, подстроенные, импульсные и др.

Для старых типов конденсаторов в основу условных обозначений брались конструктивные, технологи­ческие, эксплуатационные и другие признаки (например: КД — конденсаторы дисковые; ФТ — фторопластовые теплостойкие; КТП. — конденсаторы трубчатые про­ходные).

СИСТЕМА УСЛОВНЫХ ОБОЗНАЧЕНИЙ

Условное обозначение конденсаторов может быть со­кращенным и полным.

Сокращенное условное обозначение состоит из букв и цифр. Первый элемент — буква или сочетание букв — обозначают подкласс конденсатора: К — постоянной емкости; КТ — подстроечные; КП — переменной емкости. второй элемент обозначает группу конденсаторов в за­висимости от вида диэлектрика (табл.1). Третий эле­мент пишется через дефис и соответствует порядковому номеру разработки.

Маркировка на конденсаторах может быть буквенно-цифровая, содержащая сокращенное обозначение кон­денсатора, номинальное напряжение, емкость, допуск, группу ТКЕ, дату изготовления, либо цветовая.

В зависимости от размеров конденсаторов приме­няются полные или сокращенные (кодированные) обо­значения номинальных емкостей и их допускаемых откло­нений.

Полное обозначение номинальных емкостей состоит из цифрового значения номинальной емкости и обозна­чения единицы измерения (пФ — пикофарады, мкФ — микрофарады, Ф — фарады).

Кодированное обозначение номинальных емкостей состоит из трех или четырех знаков, включающих две или три цифры и букву. Буква из русского или латинского алфавита обозначает множитель, состав­ляющий значение емкости, и определяет положение запятой.десятичного знака.

ПАРАМЕТРЫ КОНДЕНСАТОРОВ

Номинальная емкость и допускаемое отклонение емкости. Номинальная емкость (Сн — емкость, значе­ние которой обозначено на конденсаторе или указано в сопроводительной документации. Фактическое значе­ние емкости может отличаться от номинальной на вели­чину допускаемого отклонения. Номинальные значения емкости стандартизированы и выбираются из опреде­ленных рядов чисел путем умножения или деления их на 10n где п — целое положительное или отрицательное число.

 

Катушка индуктивности

Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат)проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальномкаркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности, катушки часто снабжают замкнутым или разомкнутым ферромагнитным сердечником. Дроссели подавления высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот, имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники (как правило, ферромагнитные) используют для изменения индуктивности катушек в небольших пределах путём изменения положения сердечника относительно обмотки. На сверхвысоких частотах, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличивают потери, применяются металлические (латунные) сердечники.

На печатных платах электронных устройств так же иногда делают плоские «катушки» индуктивности: геометрия печатного проводника выполняется в виде круглой или прямоугольной спирали, волнистой линии или в виде меандра. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса

Свойства катушки индуктивности:

· Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.

· Сопротивление (модуль ипмеданса) катушки растет с увеличением частоты текущего через неё тока.

· Катушка индуктивности при протекании тока запасает энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для переменного тока имеет не только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением, модуль которого , где — индуктивность катушки, — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Эта энергия равна:

.

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

.

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

.

При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

,

где: — ток в катушке,

— начальный ток катушки,

— текущее время,

— постоянная времени.

Постоянная времени выражается формулой:

,

где: — сопротивление резистора,

— омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени: катушки:

.

При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

В цепи синусоидального тока, ток в катушке по фазе отстаёт от фазы напряжения на ней на π/2.

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

, где

; ;

Характеристики катушки индуктивности

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к силе протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

,

где — магнитная постоянная,

— относительная магнитная проницаемость материала сердечника (зависит от частоты),

— площадь сечения сердечника,

— длина средней линии сердечника,

— число витков.

 

Схема последовательного соединения катушек индуктивности. Ток через каждую катушку один и тот же.

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

.

При параллельном соединении катушек общая индуктивность равна

.

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

Потери в проводах

Потери в проводах вызваны тремя причинами:

· Провода обмотки обладают омическим (активным) сопротивлением.

· Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.

· В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.

Потери в диэлектрике ]

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

· Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери, характерные для диэлектриков конденсаторов).

· Потери, обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика — на «гистерезис».

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

 

Векторная диаграмма потерь и добротности реальной катушки индуктивности. Обозначения: Z — импеданс; Xc — ёмкостная составляющая импеданса; Xl — индуктивная составляющая импеданса; X — реактивная составляющая импеданса; Ri — активная составляющая импеданса.

 

Трансформатор

Генераторы электростанций имеют ЭДС порядка 10–20 кВ. Для передачи электроэнергии на большие расстояния нужно повышать напряжение до нескольких сотен киловольт.

С другой стороны, напряжение бытовой электросети составляет 220 В. Поэтому при доставке энергии обычному потребителю требуется понижение напряжения до сотен вольт.

Замечательно, что повышение и понижение напряжения в случае синусоидального переменного тока не представляет никаких сложностей. Для этого используются специальные устройства трансформаторы.

Простейший трансформатор состоит из двух обмоток, навитых на один и тот же замкнутый стальной сердечник.

Первичная обмотка содержит N1 витков; на неё подаётся входное напряжение u1. Это напряжение как раз и требуется преобразовать повысить или понизить.

Вторичная обмотка содержит N2 витков. К ней подсоединяется нагрузка, условно обозначаемая резистором R. Это потребитель, для работы которого нужно преобразованное напряжение u2.

Схема трансформатора изображена на рис.

 

 

Тема №2: Электровакуумные и ионные приборы [4].

Введение

Электронная лампа была первым активным (усиливающим) элементом в электронике. Сегодня использование электронных ламп для усиления малых сигналов выглядит устаревшим. Однако они все еще находят применение в тех случаях, когда речь идет о больших напряжениях или о высокочастотных сигналах большой мощности. Кроме того, у любителей музыки популярны ламповые усилители звуковой частоты с присущими им особенностями. В частности, плавное изменение характеристик схемы вблизи перегрузок может создавать субъективное впечатление чистоты звука большой силы. Вот почему инженеру в области электроники полезно иметь, по крайней мере, элементарное представление о лампах и ламповых схемах. В этой главе дается краткий обзор схем на электронных (вакуумных) лампах, включая описание той из них, которая до сих пор используется очень широко, а именно — электронно-лучевой трубки.

Термоэлектронная эмиссия

В начале 80-х годов прошлого века Томас Эдисон, занимаясь осветительными приборами с угольной нитью накала, обратил внимание на почернение стеклянного баллона после нескольких часов работы такого устройства. Пытаясь перехватить хотя бы часть частиц, образующих почернение, он запаял внутрь одной из своих ламп металлическую пластину и удивился, обнаружив, что при подаче на эту пластину положительного напряжения относительно нити накала в цепи течет ток. В течение последующих 20 лет никто не знал, что ток в этом «эффекте Эдисона» обусловлен электронами, испускаемыми нагретой нитью и улавливаемыми положительно заряженной пластиной. Чтобы описать этот процесс теплового освобождения частиц, был придуман термин термоионная эмиссия, а сами свободные частицы стали называть термоионами. Хотя сегодня слово «ион» означает «атом, потерявший или приобретший электрон», его первоначальное значение было много шире и просто означало любую свободно передвигающуюся частицу (по-гречески, ион — «идущий»).

Ламповый диод

Примерно в то же время, когда Эдисон обнаружил почернение баллонов осветительных ламп, это явление исследовал также Амброз Флеминг, занимавшийся усовершенствованием детектора Маркони для обнаружения радиоволн. В 1904 году он запатентовал свою «пульсирующую» лампу, названную так по той причине, что она позволяет пропускать ток только в одном направлении. На рис. 3.1 показано схематическое изображение лампового диода (двухэлектродной лампы), как теперь принято называть изобретение Флеминга. Нить накаливания окружена свернутой в цилиндр пластиной, обычно называемой анодом, поскольку ее потенциал, как правило, поддерживается положительным по отношению к нити. Аналогично, нить обычно называют катодом. На рис. 3.2 приведено обозначение диода на схемах, где явным образом указаны катод и анод.

На рис. 3.3 показана вольтамперная характеристика лампового диода, причем можно заметить, что она похожа на характеристику р-п перехода, приведенную на рис. 1.11. В отличие от р-п перехода, в ламповом диоде небольшой ток течет в прямом направлении при нулевом напряжении на диоде. Это происходит потому, что нить испускает электроны, отрывающиеся от интенсивно колеблющихся при высокой температуре атомов, и электроны имеют при этом определенную скорость. Малая доля этих электронов достигает анода даже в отсутствие способствующего этому электрического поля.

Когда на анод подается небольшое положительное напряжение, большее число электронов притягивается им. Однако не все электроны, эмитированные катодом, достигают анода, так как большое облако электронов между катодом и анодом действует как отрицательный пространственный заряд, оказывающий отталкивающее действие на испускаемые катодом электроны. Можно сказать, что этот эффект торможения подобен действию обедненного слоя в полупроводниковом р-п переходе. По мере того как на анод подается все большее положительное напряжение, эффект пространственного заряда ослабевает и все большее и большее число электронов достигает анода.

Если анод сделать отрицательным относительно катода, то электроны, испускаемые катодом, будут отталкиваться обратно к катоду, и в конце концов ток вовсе перестает течь, когда отрицательное напряжение на аноде становится равным нескольким вольтам. Обратите внимание, что при хорошем вакууме отсутствуют не основные носители, которые могли бы вызвать обратный ток утечки. Все же, из-за остатков газа в откачанном баллоне и из- за утечки по поверхности стекла, какой-то обратный ток существует. Но этот ток совершенно другой природы по сравнению с р-п переходом, где наличие не основных носителей теплового происхождения непосредственно влияет на работу этого полупроводникового прибора.

Ламповый триод

Чтобы можно было управлять анодным током и, таким образом, получить усиливающий термоэлектронный прибор, нужно было добавить что-то вроде дополнительного электрода. Первым это сделал в 1907 году Ли де Форест, который сконструировал лампу с проволочной решеткой, или сеткой, между катодом и анодом. Это трехэлектродное устройство, или триод, показано на рис. 3.4; на рис. 3.5 приведено его условное обозначение на схемах.

Обычно сетка поддерживается отрицательной по отношению к катоду и, будучи таковой, она отталкивает обратно к катоду часть эмиттированных им электронов, позволяя лишь определенной доле электронов достигать анода, проходя через отверстия в решетке. Чем более отрицательным становится напряжение на сетке, тем в большей степени проявляется ее отталкивающее действие и тем меньшим становится анодный ток. В конце концов, достигается точка отсечки, когда электроны не достигают анода и ток падает до нуля. В этом смысле лампа ведет себя подобно полевому транзистору: и в триоде, и в полевом транзисторе мы имеем выходной ток, управляемый входным напряжением. Типичная проходная характеристика лампового триода показана на рис. 3.6; интересно сравнить ее с графиком на рис. 2.5(a) для полевого транзистора. Как и в случае с полевым транзистором, передаточная способность лампы определяется следующим образом

Крутизну иногда называют взаимной проводимостью; действительно, так можно сказать, исходя из приведенного определения величины gm, но это совершенно неуместно. Соотношение взаимности подразумевает обоюдную зависимость, а это не применимо ни к лампе, ни к полевому транзистору: хотя напряжение на сетке или на затворе и управляет током анода или стока, обратного действия нет, и название крутизна (буквально — сквозная проводимость) является предпочтительным.



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 274; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.206.160.129 (0.142 с.)