Деление отрезка в заданном соотношении. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Деление отрезка в заданном соотношении.



Деление отрезка в заданном соотношении.

Рассмотрим в пространстве две различные точки M1 и M2 и прямую, определяемую этими точками. Выберем на этой прямой некоторое направление. На полученной оси точки M1 и M2 определяют направленный отрезок M1M2. Пусть M – любая, отличная от M2 точка указанной оси. Число

l=M1M/MM2 (*)

называется отношением, в котором точка M делит направленный отрезок M1M2 . Таким образом, любая, отличная от M2 точка M делит отрезок M1M2 в некотором отношении l, где l определяется равенством (*).

Уравнение прямой с угловым коэффициентом.

Пусть заданы две прямые и , (). Тогда, если , то угол между этими прямыми можно найти из формулы


Если , то прямые перпендикулярны.

Доказательство. Как известно из школьного курса математики, угловой коэффициент в уравнении прямой равен тангенсу угла наклона прямой к оси . Из рис. 11.10 видно, что .

Так как , , то при выполняется равенство

что дает формулу

Если же , то , откуда

Следовательно, и .

Общее уравнение прямой.

Докажем сначала, что если на плоскости П задана произвольная прямая линия L и фиксированная произвольная декартова прямоугольная систему Оху, то прямая L определяется в этой системе уравнением первой степени.

Достаточно доказать, что прямая L определяется уравнением первой степени при каком-то одном специальном выборе декартовой прямоугольной системы на плоскости П, ибо тогда она будет определяться уравнением первой степени и при любом выборе декартовой прямоугольной системы на плоскости П. Направим ось Ох вдоль прямой L, а ось Оу перпендикулярно к ней. Тогда уравнением прямой будет уравнение первой степени у=0. в самом деле, этому уравнению будут удовлетворять координаты любой точки, лежащей на прямой L, и не будут удовлетворять координаты ни одной точки, не лежащей на прямой L.

Докажем теперь, что если на плоскости П фиксирована произвольная декартова система Оху, то всякое уравнение первой степени с двумя переменными х и у определяет относительно этой системы прямую линию.

В самом деле пусть фиксирована произвольная декартова прямоугольная системы Оху и задано уравнение первой степени Ах+Ву+с=0, в котором А В С- какие угодно постоянные, причем из постоянных А и В хотя бы одна отлична от 0. уравнение заведомо имеет хотя бы одно решение х0 и у0, т.е. существует хотя бы одна точка М(х0, у0) координаты которой удовлетворяют уравнению Ах0+Ву0+С=0. вычитая из уравнения первой степени уравнение где подставлена точка М(х0, у0), мы получим уравнение: А(х- х0)+В(у- у0)=0(1), эквивалентное уравнении первой степени. Достаточно доказать, что уравнение определяет относительно системы некоторую прямую. Мы докажем, что уравнение (1) определяет прямую L, проходящую через точку М(х0, у0) и перпендикулярную вектору n={A,B}. В самом деле, если точка М(х,у) лежит на указанной прямой L, то ее координаты удовлетворяют уравнению (1), ибо в этом случае векторы n={A,B} и М0М={x-x0,у-у0} ортогональныи их скалярное произведение А(х- х0)+В(у- у0) равно нулю. Если же точка М(х,у) не лежит на указанной прямой, то ее координаты не удовлетворяют уравнению (1), ибо в этом случае векторы n={A,B} и М0М={x-x0,у-у0} не ортогональны и поэтому их скалярное произведение не равно нулю. Утверждение доказано

Уравнение Ах+Ву+С=0 с произвольными коэффициентами А В иС такими, что А и В не равны нулю одновременно, называется общим уравнением прямой. Мы доказали, что прямая определяемая общим уравнением Ах+Ву+С=0 ортогональна к вектору n={A,B}. Этот последний вектор мы будем называть нормальным вектором прямой.

Каноническое уравнение прямой. Любой ненулевой вектор, параллельный данной прямой, будем называть направляющим вектором этой прямой. Поставим перед собой задачу: найти уравнение прямой, проходящей через данную точку М111) и имеющей заданный направляющий вектор q={l,m}. Очевидно точка М(х,у) лежит на указанной прямой тогда и только тогда, когда векторы М1М={x-x1, y-y1} и q={m,l} коллинеарны, тогда и только тогда, когда координаты этих векторов пропорциональны, т.е.

Рассмотрим теперь полное уравнение плоскости и покажем, что оно может быть приведено к следующему виду. , называемому уравнением плоскости «в отрезках». Так как коэффициенты А В С отличны от нуля то мы можем переписать уравнение в виду и затем положить А=-С/А b=-C/B. В уравнении плоскости в отрезках числа a, b имеют простой геометрический смысл: они равны величинам отрезков, которые отсекает плоскость на осях Ох, Оу соответственно (отрезки отсчитываются от начала координат). Чтобы убедиться в этом, достаточно найти точки пересечения прямой, определяемой уравнением прямой в отрезках с осями координат. Например точка пересечения с осью Ох определяется из совместного рассмотрения уравнения прямой в отрезках с уравнением у=0 оси Ох. Мы получим координаты точки пересечения х=а у=0. Аналогично устанавливается, что координаты точки пересечения прямой с осью Оу имеют вид х=0 и у=b.

Теорема о базисном миноре.

Любой столбец матрицы является линейной комбинацией столбцов, проходящих через базисный минор.

Следствие1:Ранг матрицы равен максимальному числу ее столбцов, образующих линейно независимую систему.

Доказательство: Пусть ранг матрицы равен . Возьмем столбцы, проходящие через базисный минор. Предположим, что эти столбцы образуют линейно зависимую систему. Тогда один из столбцов является линейной комбинацией других. Поэтому в базисном миноре один столбец будет линейной комбинацией других столбцов. Этот базисный минор должен быть равен нулю, что противоречит определению базисного минора. Следовательно, предположение о том, что столбцы, проходящие через базисный минор, линейно зависимы, не верно. Итак, максимальное число столбцов, образующих линейно независимую систему, больше либо равно . Предположим, что столбцов образуют линейно независимую систему. Составим из них матрицу . Все миноры матрицы являются минорами матрицы . Поэтому базисный минор матрицы имеет порядок не больше . По теореме о базисном миноре, столбец, не проходящий через базисный минор матрицы , является линейной комбинацией столбцов, проходящих через базисный минор, то есть столбцы матрицы образуют линейно зависимую систему. Это противоречит выбору столбцов, образующих матрицу . Следовательно, максимальное число столбцов, образующих линейно независимую систему, не может быть больше . Значит, оно равно , что и утверждалось.

 

Следствие2: Ранг матрицы равен максимальному числу ее строк, образующих линейно независимую систему.

Доказательство: Ранг матрицы при транспонировании не меняется. Строки матрицы становятся ее столбцами. Максимальное число новых столбцов транспонированной матрицы, (бывших строк исходной) образующих линейно независимую систему, равно рангу матрицы.

 

Следствие3: Если определитель матрицы равен нулю, то один из его столбцов (одна из строк) является линейной комбинацией остальных столбцов (строк).

Доказательство: Пусть порядок матрицы равен . Определитель является единственным минором квадратной матрицы, имеющим порядок . Так как он равен нулю, то . Следовательно, система из столбцов (строк) является линейно зависимой, то есть один из столбцов (одна из строк) является линейной комбинацией остальных.

 

Теорема:Определитель матрицы равен нулю тогда и только тогда, когда один из ее столбцов (одна из строк) является линейной комбинацией остальных столбцов (строк).

 

РАНГ СТУПЕНЧАТОЙ МАТРИЦЫ.

Вспомним, что матрица вида

называется ступенчатой матрицей.

Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк.

Поскольку доказано, что любую матрицу с помощью элементарных преобразований можно привести к ступенчатому виду, а элементарные преобразования не меняют ранга матрицы, то можно дать еще одно эквивалентное определение ранга матицы: ранг матрицы равен числу ненулевых строк в ступенчатой форме матрицы.

Это последнее определение позволяет вычислять ранг матрицы с помощью Гауссова исключения: для того, чтобы вычислить ранг матрицы, приводим ее Гауссовым исключением к ступенчатому виду и подсчитываем количество ненулевых строк.

Ранг матрицы находится:

либо методом окаймления миноров,

либо методом элементарных преобразований.

1) При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.

Пример: Найти методом окаймления миноров ранг матрицы .

Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M2 = , отличный от нуля. Переходим теперь к минорам 3-го порядка, окаймляющим М2. Их всего два (можно
добавить второй столбец или четвертый). Вычисляем их: = 0. Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.

2) Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называютсяэквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований. Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

 

Алгоритм нахождения ранга матрицы.

Пусть требуется вычислить ранг матрицы размеров . Если матрица - нулевая, то по определению . В противном случае с помощью перестановки строк и столбцов матрицы добиваемся того, чтобы в левом верхнем углу матрицы стоял ненулевой элемент. Итак, считаем, что .

Первую строку оставляем без изменений. Ко второй строке прибавляем первую, умноженную на число . В результате вторая строка принимает вид Затем к третьей строке прибавляем первую строку, умноженную на число . В результате третья строка принимает вид

Процесс продолжаем до тех пор, пока не получим нуль на первом месте в последней строке.

Преобразованная матрица имеет вид

Если все строки, начиная со второй, в полученной матрице нулевые, то ее ранг равен 1, так как есть минор первого порядка, отличный от нуля . В противном случае перестановкой строк и столбцов матрицы с номерами, большими единицы, добиваемся, чтобы второй элемент второй строки был отличен от нуля. Итак, считаем, что . Первую и вторую строки оставляем без изменений. К третьей строке прибавляем вторую, умноженную на число . В результате получим, что второй элемент третьей строки равен нулю. Затем к четвертой строке прибавляем вторую, умноженную на число , и т.д. В результате получаем матрицу

Если все строки, начиная с третьей, нулевые, то , так как минор . В противном случае перестановкой строк и столбцов с номерами, большими двух, добиваемся, чтобы третий элемент третьей строки был отличен от нуля. Далее, добавлением третьей строки, умноженной на соответствующие числа, к строкам с большими номерами получаем нули в третьем столбце, начиная с четвертого элемента, и т.д.

На каком-то этапе мы придем к матрице, у которой все строки, начиная с -ой, равны нулю (или отсутствуют при ), а минор в первых строках и первых столбцах является определителем треугольной матрицы с ненулевыми элементами на диагонали. Ранг такой матрицы равен . Следовательно, .

Системы линейных уравнений

Определение: Системой линейных уравнений с неизвестными называется система уравнений вида

(1)

Систему (1) можно записать также в виде

или в виде

Но наиболее удобной формой записи системы (15.1) является матричная запись. Введем следующие матрицы: матрица системы , столбец неизвестных и столбец свободных членов ,

с помощью введенных обозначений систему (1) можно записать в виде

Ax=b

Однородная, неоднородная СЛАУ.
Система уравнений называется однородной, если и неоднородной в противном случае.

МАТРИЧНЫЕ УРАВНЕНИЯ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля | A | ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A: . Поскольку A-1A = E и EX = X, то получаем решение матричного уравнения в виде X = A-1B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных.

Формулы Крамера

Метод Крамера состоит в том, что мы последовательно находим главный определитель системы, т.е. определитель матрицы А: D = det (ai j) и n вспомогательных определителей D i (i= ), которые получаются из определителя D заменой i-го столбца столбцом свободных членов.

Формулы Крамера имеют вид: D × x i = D i (i = ).

Из этого следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы: если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам: x i = D i / D.

Если главный определитель системы D и все вспомогательные определители D i = 0 (i= ), то система имеет бесчисленное множество решений. Если главный определитель системы D = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.

Теорема (правило Крамера): Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство: Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца .

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: . Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Теорема Кронекера - Капелли.

Система линейных уравнений является совместной тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы .

Доказательство: Оно распадается на два этапа.

1. Пусть система имеет решение. Покажем, что .

Пусть набор чисел является решением системы. Обозначим через -ый столбец матрицы , . Тогда , то есть столбец свободных членов является линейной комбинацией столбцов матрицы . Пусть . Предположим, что . Тогда по . Выберем в базисный минор . Он имеет порядок . Столбец свободных членов обязан проходить через этот минор, иначе он будет базисным минором матрицы . Столбец свободных членов в миноре является линейной комбинацией столбцов матрицы . В силу свойств определителя , где -- определитель, который получается из минора заменой столбца свободных членов на столбец . Если столбец проходил через минор M, то в , будет два одинаковых столбца и, следовательно, . Если столбец не проходил через минор , то будет отличаться от минора порядка r+1 матрицы только порядком столбцов. Так как , то . Таким образом, , что противоречит определению базисного минора. Значит, предположение, что , неверно.

2. Пусть . Покажем, что система имеет решение. Так как , то базисный минор матрицы является базисным минором матрицы . Пусть через минор проходят столбцы . Тогда по теореме о базисном миноре в матрице столбец свободных членов является линейной комбинацией указанных столбцов:

(1)


Положим , , , , остальные неизвестные возьмем равными нулю. Тогда при этих значениях получим

В силу равенства (1) . Последнее равенство означает, что набор чисел является решением системы. Существование решения доказано.

В рассмотренной выше системе , и система является совместной. В системе , , и система является несовместной.

Замечание:Хотя теорема Кронекера-Капелли дает возможность определить, является ли система совместной, применяется она довольно редко, в основном в теоретических исследованиях. Причина заключается в том, что вычисления, выполняемые при нахождении ранга матрицы, в основном совпадают с вычислениями при нахождении решения системы. Поэтому, обычно вместо того, чтобы находить и , ищут решение системы. Если его удается найти, то узнаем, что система совместна и одновременно получаем ее решение. Если решение не удается найти, то делаем вывод, что система несовместна.

Алгоритм нахождения решений произвольной системы линейных уравнений (метод Гаусса)

Пусть дана система линейных уравнений с неизвестными . Требуется найти ее общее решение, если она совместна, или установить ее несовместность. Метод, который будет изложен в этом разделе, близок к методу вычисления определителя и к методу нахождения ранга матрицы. Предлагаемый алгоритм называется методом Гаусса или методом последовательного исключения неизвестных.

Выпишем расширенную матрицу системы

Назовем элементарными операциями следующие действия с матрицами:

1. перестановка строк;

2. умножение строки на число, отличное от нуля;

3. сложение строки с другой строкой, умноженной на число.

Отметим, что при решении системы уравнений, в отличие от вычисления определителя и нахождения ранга, нельзя оперировать со столбцами. Если по матрице, полученной из выполнением элементарной операции, восстановить систему уравнений, то новая система будет равносильна исходной.

Цель алгоритма -- с помощью применения последовательности элементарных операций к матрице добиться, чтобы каждая строка, кроме, быть может, первой, начиналась с нулей, и число нулей до первого ненулевого элемента в каждой следующей строке было больше, чем в предыдущей.

Шаг алгоритма заключается в следующем. Находим первый ненулевой столбец в матрице . Пусть это будет столбец с номером . Находим в нем ненулевой элемент и строку с этим элементом меняем местами с первой строкой. Чтобы не нагромождать дополнительных обозначений, будем считать, что такая смена строк в матрице уже произведена, то есть . Тогда ко второй строке прибавим первую, умноженную на число , к третьей строке прибавим первую, умноженную на число , и т.д. В результате получим матрицу

(Первые нулевые столбцы, как правило, отсутствуют.)

Если в матрице встретилась строка с номером k, в которой все элементы равны нулю, а , то выполнение алгоритма останавливаем и делаем вывод, что система несовместна. Действительно, восстанавливая систему уравнений по расширенной матрице, получим, что -ое уравнение будет иметь вид

Этому уравнению не удовлетворяет ни один набор чисел .

Матрицу можно записать в виде

где

По отношению к матрице выполняем описанный шаг алгоритма. Получаем матрицу

где , . Эту матрицу снова можно записать в виде

и к матрице снова применим описанный выше шаг алгоритма.

Процесс останавливается, если после выполнения очередного шага новая уменьшенная матрица состоит из одних нулей или если исчерпаны все строки. Заметим, что заключение о несовместности системы могло остановить процесс и ранее.

Если бы мы не уменьшали матрицу, то в итоге пришли бы к матрице вида

Далее выполняется так называемый обратный ход метода Гаусса. По матрице составляем систему уравнений. В левой части оставляем неизвестные с номерами, соответствующими первым ненулевым элементам в каждой строке, то есть . Заметим, что . Остальные неизвестные переносим в правую часть. Считая неизвестные в правой части некоторыми фиксированными величинами, несложно выразить через них неизвестные левой части.

Теперь, придавая неизвестным в правой части произвольные значения и вычисляя значения переменных левой части, мы будем находить различные решения исходной системы Ax=b. Чтобы записать общее решение, нужно неизвестные в правой части обозначить в каком-либо порядке буквами , включая и те неизвестные, которые явно не выписаны в правой части из-за нулевых коэффициентов, и тогда столбец неизвестных можно записать в виде столбца, где каждый элемент будет линейной комбинацией произвольных величин (в частности, просто произвольной величиной ). Эта запись и будет общим решением системы.

Если система была однородной, то получим общее решение однородной системы. Коэффициенты при , взятые в каждом элементе столбца общего решения, составят первое решение из фундаментальной системы решений, коэффициенты при -- второе решение и т.д.

Способ 2: Фундаментальную систему решений однородной системы можно получить и другим способом. Для этого одной переменной, перенесенной в правую часть, нужно присвоить значение 1, а остальным - нули. Вычислив значения переменных в левой части, получим одно решение из фундаментальной системы. Присвоив другой переменной в правой части значение 1, а остальным - нули, получим второе решение из фундаментальной системы и т.д.

Определение: система называется совместно й, если она имеет хотя бы одно решение, и несовместной -- в противном случае, то есть в случае, когда решений у системы нет. Вопрос о том, имеет ли система решение или нет, связан не только с соотношением числа уравнений и числа неизвестных. Например, система из трех уравнений с двумя неизвестными

 

имеет решение , и даже имеет бесконечно много решений, а система из двух уравнений с тремя неизвестными

 

решений не имеет, то есть является несовместной.

Определение: Расширенной матрицей системы линейных уравнений называется матрица , отличающаяся от матрицы системы наличием дополнительного столбца из свободных членов:

 

Следствие: Ранг расширенной матрицы либо равен рангу матрицы системы A, либо больше его на единицу.

Доказательство: Так как любая линейно независимая система столбцов матрицы A является линейно независимой системой столбцов матрицы , то в силу предложения 14.26 (Ранг матрицы равен максимальному числу ее столбцов, образующих линейно независимую систему) .

Пусть . Предположим, что , . Тогда в матрице есть линейно независимая система из r+k столбцов. Среди этих столбцов может быть только один, не принадлежащий матрице A. Тогда подсистема остальных r+k-1 столбцов, принадлежащих матрице A, должна быть линейно независимой. Следовательно, . Получили противоречие. Предположение, что k>1, неверно.

Квадратные системы с невырожденной матрицей.

Система называется квадратной, если число m ее уравнений равно числу n неизвестных, то есть когда ее матрица A -- квадратная матрица.

Решение СЛАУ: Пусть дана СЛАУ

A11x1 + … + a1nxn = 0

……. … ……

Am1x1 + … + amnxn = 0

Данная система всегда совместна так как имеет тривиальное решение х1=…=хn=0

Для существования нетривиальных решений необходимо и достаточно выполнение

словия r = r(A) < n, что равносильно условию det(A)=0, когда матрица А – квадратная.

Th Совокупность решений СЛАУ образует линейное пространство размерности (n-r). Это означает, что произведение ее решения на число, а также сумма и линейная комбинация конечного числа ее решений является решениями этой системы. Линейное пространство решений любой СЛАУ является подпространством пространства Rn.

Любая совокупность (n-r) линейно независимых решений СЛАУ (являющаяся базисом в пространстве решений) называется фундаментальной совокупностью решений(ФСР).

Пусть х1,…,хr - базисные неизвестные, хr+1,…,хn – свободные неизвестные. Свободным переменным дадим поочередно следующие значения:

хr+1=1 хr+1=0 хr+1=0

хr+2=0 хr+2=1 хr+2=0

…… …… ……

хn=0 хn=0 хn=1



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 351; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.124.244 (0.119 с.)