Медианный фильтр. Медианная фильтрация 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Медианный фильтр. Медианная фильтрация



Содержание

Содержание............................................................................................... 1

1.Техническое задание....................................................................... 2

2.Анализ технического задания.................................................... 3

2.1. Медианный фильтр. Медианная фильтрация................... 4

2.1.1 Достоинства и недостатки медианных фильтров.............................. 6

2.2 Принцип фильтрации..................................................................... 7

2.3 Подавление статистических шумов.................................... 8

2.4 Импульсные и точечные шумы................................................ 9

2.5 Перепад плюс шум........................................................................ 11

2.6 Фильтрация Винера....................................................................... 13

2.7. Фильтрация изображений......................................................... 15

2.7.1 Использование адаптивной фильтрации..................... 17

2.7.2 Использование медианной фильтрации....................... 17

3. ПРОЕКТИРОВАНИЕ ВСПОМОГАТЕЛЬНОЙ ФУНКЦИИ MATLAB. 18

3.1. Считывание изображения и создание его копии............................... 18

3.2. Добавление шумов к копии исходного изображения................... 18

3.3. Обработка зашумленной копии при помощи медианного фильтра. 18

3.4. Обработка зашумленной копии при помощи фильтра Винера....... 20

3.5. Расчет СКО между фильтрованным изображением и оригиналом. 21

4.Результаты обработки.................................................................... 23

Список Литературы............................................................................. 26

 

 

1. Техническое задание

Сравнение эффективности медианного и усредняющего фильтров

 

1. Создать копию исходного изображения.

2. Добавить шум к копии исходного изображения.

- гауссов шум - ‘gaussian’

- импульсный шум - ‘salt&pepper’

- мультипликативный шум - ‘speckle’

3. Посчитать СКО между зашумлённым изображением и оригиналом.

4. Одну из зашумлённых копий обработать при помощи фильтра.

5. Другую копию обработать при помощи фильтра 2.

6. Посчитать СКО между фильтрованным изображениям и оригиналом.

7. Построить графики зависимости СКО отфильтрованного изображения от параметра шума (в одних осях для разных фильтров).

 

Исходное изображение.

 

 

2. Анализ технического задания

 

Медианные фильтры достаточно часто применяются на практике как средство предварительной обработки цифровых данных. Специфической особенностью фильтров является явно выраженная избирательность по отношению к элементам массива, представляющим собой немонотонную составляющую последовательности чисел в пределах окна (апертуры) фильтра, и резко выделяющихся на фоне соседних отсчетов. В то же время на монотонную составляющую последовательности медианный фильтр не действует, оставляя её без изменений. Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре могут, например, сохранять без искажений резкие границы объектов, эффективно подавляя некоррелированные или слабо коррелированные помехи и малоразмерные детали. Это свойство позволяет применять медианную фильтрацию для устранения аномальных значений в массивах данных, уменьшения выбросов и импульсных помех. Характерной особенностью медианного фильтра является его нелинейность. Во многих случаях применение медианного фильтра оказывается более эффективным по сравнению с линейными фильтрами, поскольку процедуры линейной обработки являются оптимальными при равномерном или гауссовом распределении помех, что в реальных сигналах может быть далеко не так. В случаях, когда перепады значений сигналов велики по сравнению с дисперсией аддитивного белого шума, медианный фильтр дает меньшее значение среднеквадратической ошибки по сравнению с оптимальными линейными фильтрами. Особенно эффективным медианный фильтр оказывается при очистке сигналов от импульсных шумов при обработке изображений, акустических сигналов, передаче кодовых сигналов и т.п. Однако детальные исследования свойств медианных фильтров как средства фильтрации сигналов различного типа являются довольно редкими.

 

Принцип фильтрации.

 

Медианы давно использовались и изучались в статистике как альтернатива средним арифметическим значениям отсчетов в оценке выборочных средних значений. Медианой числовой последовательности х1, х2, …, хn при нечетном n является средний по значению член ряда, получающегося при упорядочивании этой последовательности по возрастанию (или убыванию). Для четных n медиану обычно определяют как среднее арифметическое двух средних отсчетов упорядоченной последовательности.

Медианный фильтр представляет собой оконный фильтр, последовательно скользящий по массиву сигнала, и возвращающий на каждом шаге один из элементов, попавших в окно (апертуру) фильтра. Выходной сигнал yk скользящего медианного фильтра шириной 2n+1 для текущего отсчета k формируется из входного временного ряда …, xk-1, xk, xk+1,… в соответствии с формулой:

yk = med(xk-n, xk-n+1,…, xk-1, xk, xk+1 ,…, xk+n-1, xk+n),

где med(x1, …, xm, …, x2n+1) = xn+1, xm – элементы вариационного ряда, т.е. ранжированные в порядке возрастания значений xm:x1 = min(x1, x2,…, x2n+1) ≤ x(2) ≤ x(3) ≤ … ≤ x2n+1 = max(x1, x2,…, x2n+1).

Таким образом, медианная фильтрация осуществляет замену значений отсчетов в центре апертуры медианным значением исходных отсчетов внутри апертуры фильтра. На практике апертура фильтра для упрощения алгоритмов обработки данных, как правило, устанавливается с нечетным числом отсчетов, что и будет приниматься при рассмотрении в дальнейшем без дополнительных пояснений.

Импульсные и точечные шумы

 

При регистрации, обработке и обмене данными в современных измерительно-вычислительных и информационных системах потоки сигналов кроме полезного сигнала s(t-t0) и флуктуационных шумов q(t) содержат, как правило, импульсные потоки g(t)= d(t-tk) различной интенсивности с регулярной или хаотической структурой:

x(t) = s(t-t0) + g(t) + q(t).

Под импульсным шумом понимается искажение сигналов большими импульсными выбросами произвольной полярности и малой длительности. Причиной появления импульсных потоков могут быть как внешние импульсные электромагнитные помехи, так и наводки, сбои и помехи в работе самих систем. Совокупность статистически распределенного шума и потока квазидетерминированных импульсов представляет собой комбинированную помеху. Радикальный метод борьбы с комбинированной помехой - применение помехоустойчивых кодов. Однако это приводит к снижению скорости и усложнению систем приемо-передачи данных. Простым, но достаточно эффективным альтернативным методом очистки сигналов в таких условиях является двухэтапный алгоритм обработки сигналов x(t), где на первом этапе производится устранение из потока x(t) шумовых импульсов, а на втором – очистка сигнала частотными фильтрами от статистических шумов. Для сигналов, искаженных действием импульсных шумов, отсутствует строгая в математическом смысле постановка и решение задачи фильтрации. Известны лишь эвристические алгоритмы, наиболее приемлемым из которых является алгоритм медианной фильтрации.

Допустим, что шум q(t) представляет собой статистический процесс с нулевым математическим ожиданием, полезный сигнал s(t-t0) имеет неизвестное временное положение t0 Î [0, T], а поток шумовых импульсов g(t) имеет вид:

g(t) = ek ak g(t-tk),

где ak - амплитуда импульсов в потоке, tk - неизвестное временное положение импульсов, ek=1 с вероятностью pk и ek=0 с вероятностью 1-pk. Такое задание импульсной помехи соответствует потоку Бернулли.

 

При применении к потоку x(t) скользящей медианной фильтрации с окном N отсчетов (N – нечетное) медианный фильтр полностью устраняет одиночные импульсы, удаленные друг от друга минимум на половину апертуры фильтра, и подавляет импульсные помехи, если количество импульсов в пределах апертуры не превосходит (N-1)/2. В этом случае, при pk = p для всех импульсов помехи, вероятность подавления помех может быть определена по выражению /3i/:

R(p) = pm(1-p)N-p.

Рис.1

На рис.1 приведены результаты расчетов вероятности подавления импульсной помехи медианным фильтром. При p<0.5 результаты статистического моделирования процесса показывают хорошее соответствие расчетным значениям. Для интенсивных импульсных шумовых потоков при p>0.5 медианная фильтрация становится мало эффективной, т.к. происходит не подавление, а усиление и трансформация его в поток импульсов другой структуры (со случайной длительностью).

Если вероятность ошибки не очень велика, то медианная фильтрация даже с достаточно малой апертурой значительно уменьшит число ошибок. Эффективность исключения шумовых импульсов повышается с увеличением апертуры фильтра, но одновременно может увеличиваться и искажение полезного сигнала.

Перепад плюс шум.

 

Рассмотрим фильтрацию перепадов при наличии аддитивного белого шума, т. е. фильтрацию последовательностей, или изображений, с

x = s + z,

Рис. 2

где s - детерминированный сигнал, равный 0 по одну сторону or перепада и h — по другую, a z - случайные значения белого шума. Предположим, что случайные значения шума z распределены по нормальному закону N(0, s). Для начала рассмотрим одномерную фильтрацию и будем считать, что перепад происходит в точке i = 1, таким образом, что для i£0 величина xi есть N(0, s), а для i≥1 величина хi есть N(h, s).

 

На рис. 2 показана последовательность значений математического ожидания медиан и скользящего среднего вблизи перепада высотой h = 5 при N = 3. Значения скользящего среднего следуют по наклонной линии, что свидетельствует о смазывании перепада. Поведение математического ожидания значений медианы также свидетельствует о некотором смазывании, хотя в гораздо меньше, чем для скользящего среднего.

Если воспользоваться мерой среднеквадратичной ошибки (СКО), усредненной по N точкам вблизи перепада, и вычислить значения СКО в зависимости от значений h, то нетрудно зафиксировать, что при малых значениях h<2 СКО для скользящего среднего немного меньше, чем для медианы, но при h>3 СКО медианы значительно меньше, чем СКО среднего. Этот результат показывает, что скользящая медиана значительно лучше, чем скользящее среднее, для перепадов большой высоты. Похожие результаты можно получить и для апертуры N=5, и для двумерной фильтрации с апертурами 3x3 и 5x5. Таким образом, математические ожидания медианы для малых h близки к математическим ожиданиям для соответствующих средних, но для больших h они асимптотически ограничены. Объясняется это тем, что при больших h (скажем, h>4) переменные х со средним значением 0 (для данного примера) будут резко отделены от переменных х со средним h.

Использованная мера точности может характеризовать только резкость поперек перепада и ничего не говорит о гладкости фильтрованного изображения вдоль перепада. Скользящее усреднение дает сигналы, гладкие вдоль перепада, тогда как при обработке с помощью медианным фильтром протяженные перепады оказываются слегка изрезанными.

Фильтрация Винера

 

Инверсная фильтрация обладает низкой помехоустойчивостью, потому что этот метод не учитывает зашумленность наблюдаемого изображения. Значительно менее подвержен влиянию помех и сингулярностей, обусловленных нулями передаточной функции искажающей системы, фильтр Винера, т.к. при его синтезе наряду с видом ФРТ используется информация о спектральных плотностях мощности изображения и шума.

 

Спектральная плотность сигнала определяется соотношением:

где – автокорреляционная функция.

Взаимная спектральная плотность сигнала определяется соотношением:

, (14)

где – функция взаимной корреляции.

При построении фильтра Винера ставится задача минимизации среднеквадратического отклонения обработанного изображения от предмета:

,

где – математическое ожидание. Преобразуя эти выражения можно показать, что минимум достигается, когда передаточная функция определяется следующим выражением:

Дальнейший анализ показывает, что восстановление изображения, формирование которого описывается выражением должно осуществляться с использованием следующего ОПФ восстанавливающего преобразователя:

.

 

Если шума на изображении нет, то спектральная плотность функции шума равна 0 и выражение, которое называют фильтром Винера, превращается в обычный обратный фильтр.

 

При уменьшении спектральной плотности мощности исходного изображения передаточная функция фильтра Винера стремится к нулю. Для изображений это характерно на верхних частотах.

 

На частотах, соответствующих нулям передаточной функции формирующей системы, передаточная функция фильтра Винера также равна нулю. Таким образом, решается проблема сингулярности восстанавливающего фильтра.

ОПФ Фильтры Винера

 

Инверсные фильтры

Рис. 3. Примеры фильтров

 

 

Фильтрация изображений.

Медианная фильтрация изображений наиболее эффективна, если шум на изображении имеет импульсный характер и представляет собой ограниченный набор пиковых значений на фоне нулей. В результате применения медианного фильтра наклонные участки и резкие перепады значений яркости на изображениях не изменяются. Это очень полезное свойство именно для изображений, на которых контуры несут основную информацию.

Рис.4

При медианной фильтрации зашумленных изображений степень сглаживания контуров объектов напрямую зависит от размеров апертуры фильтра и формы маски. Примеры формы масок с минимальной апертурой приведены на рисунке 4. При малых размерах апертуры лучше сохраняются контрастные детали изображения, но в меньшей степени подавляется импульсные шумы. При больших размерах апертуры наблюдается обратная картина. Оптимальный выбор формы сглаживающей апертуры зависит от специфики решаемой задачи и формы объектов. Особое значение это имеет для задачи сохранения перепадов (резких границ яркости) в изображениях.

Под изображением перепада понимаем изображение, в котором точки по одну сторону от некоторой линии имеют одинаковое значение а, а все точки по другую сторону от этой линии - значение b, b ¹ a. Если апертура фильтра симметрична относительно начала координат, то медианный фильтр сохраняет любое изображение перепада. Это выполняются для всех апертур с нечетным количеством отсчетов, т.е. кроме апертур (квадратные рамки, кольца), которые не содержат начала координат. Тем не менее квадратные рамки и кольца будут лишь незначительно изменять перепад.

Для упрощения дальнейшего рассмотрения ограничимся примером фильтра с квадратной маской размером N × N, при N=3. Скользящий фильтр просматривает отсчеты изображения слева-направо и сверху-вниз, при этом входную двумерную последовательность также представим в виде последовательного числового ряда отсчетов {x(n)} слева-направо сверху-вниз. Из этой последовательности в каждой текущей точке маска фильтра выделяет массив w(n), как W-элементный вектор, который в данном случае содержит все элементы из окна 3×3, центрированные вокруг x(n), и сам центральный элемент, если это предусмотрено типом маски:

w(n) = [x1 (n),x2(n), …, xW (n)].

 

В этом случае значения xi соответствует отображению слева-направо и сверху-вниз окна 3×3 в одномерный вектор.

Элементы данного вектора, как и для одномерного медианного фильтра, также могут быть упорядочены в ряд по возрастанию или убыванию своих значений:

r(n) = [r1(n), r2(n), …, rW (n)],

определено значение медианы y(n) = med(r(n)), и центральный отсчет маски заменен значением медианы. Если по типу маски центральный отсчет не входит в число ряда 8, то медианное значение находится в виде среднего значения двух центральных отсчетов ряда 9.

Приведенные выражения не объясняют способа нахождения выходного сигнала вблизи конечных и пограничных точек в конечных последовательностях и изображениях. Один из простых приемов состоит в том, что нужно находить медиану только тех точек внутри изображения, которые попадают в пределы апертуры. Поэтому для точек, расположенных рядом с границами, медианы будут определены, исходя из меньшего числа точек.

Медианная фильтрация может выполняться и в рекурсивном варианте, при котором значения сверху и слева от центрального отсчета в маске (в данном случае x1(n)-x4(n) на рис. 9) в ряде 8 заменяются на уже вычисленные в предыдущих циклах значения y1(n)-y4(n).

 

 

 

Результаты обработки

Наложение шумов на оригинальное изображение

Original

Gaussian Salt & Paper Speckle

 

Результат обработки Медианным фильтром

MedFilter_Gaussian MedFilter_Salt & Paper MedFilter_Speckle

 

Результат обработки фильтром Винера

 

WinFilter_Gaussian WinFilter_ Salt & Paper WinFilter_ Speckle

 

Результат подсчета среднеквадратическогоотклонения отфильтрованных изображенийот оригинала.

 

 

 

 

ВЫВОД

На графике видно, что медианный фильтр хорошо подавляет одиночные импульсные помехи и случайные шумовые выбросы отсчетов (CKOSaPeMed) и по графику видно, что это лучший метод по устранению данного вида зашумления.

Фильтр Винера (CKOSaPeWin),в отличии от медианного фильтра, при увеличении коэффициента зашумленности изображения, удалялся от оригинала в несколько раз.

Подавление белого и гауссового шума,в случае медианного фильтра, менее эффективно (CKOGausMed, CKOSpecMed), чем у фильтра Винера (CKOGausWin, CKOSpecWin). Слабая эффективность наблюдается также при фильтрации флюктуационного шума. При увеличении размеров окна Медиального фильтра происходит размытие изображения.

 

Список Литературы

1. Цифровая обработка цветных изображений. Шлихт Г.Ю. М., Издательство ЭКОМ, 2007. – 336 с.

2. http://prodav.narod.ru/dsp/index.html

3. Введение в цифровую обработку изображений. Ярославский Л.П. М.: Сов. радио, 2007. – 312 с.

4. http://matlab.exponenta.ru/

5. Цифровая обработка изображений в среде MATLAB. Р. Гонсалес, Р. Вудс, С. Эддинс, М.: Техносфера, 2006.

6. http://www.chipinfo.ru/literature/chipnews/199908/29.html

 

 

Содержание

Содержание............................................................................................... 1

1.Техническое задание....................................................................... 2

2.Анализ технического задания.................................................... 3

2.1. Медианный фильтр. Медианная фильтрация................... 4

2.1.1 Достоинства и недостатки медианных фильтров.............................. 6

2.2 Принцип фильтрации..................................................................... 7

2.3 Подавление статистических шумов.................................... 8

2.4 Импульсные и точечные шумы................................................ 9

2.5 Перепад плюс шум........................................................................ 11

2.6 Фильтрация Винера....................................................................... 13

2.7. Фильтрация изображений......................................................... 15

2.7.1 Использование адаптивной фильтрации..................... 17

2.7.2 Использование медианной фильтрации....................... 17

3. ПРОЕКТИРОВАНИЕ ВСПОМОГАТЕЛЬНОЙ ФУНКЦИИ MATLAB. 18

3.1. Считывание изображения и создание его копии............................... 18

3.2. Добавление шумов к копии исходного изображения................... 18

3.3. Обработка зашумленной копии при помощи медианного фильтра. 18

3.4. Обработка зашумленной копии при помощи фильтра Винера....... 20

3.5. Расчет СКО между фильтрованным изображением и оригиналом. 21

4.Результаты обработки.................................................................... 23

Список Литературы............................................................................. 26

 

 

1. Техническое задание

Сравнение эффективности медианного и усредняющего фильтров

 

1. Создать копию исходного изображения.

2. Добавить шум к копии исходного изображения.

- гауссов шум - ‘gaussian’

- импульсный шум - ‘salt&pepper’

- мультипликативный шум - ‘speckle’

3. Посчитать СКО между зашумлённым изображением и оригиналом.

4. Одну из зашумлённых копий обработать при помощи фильтра.

5. Другую копию обработать при помощи фильтра 2.

6. Посчитать СКО между фильтрованным изображениям и оригиналом.

7. Построить графики зависимости СКО отфильтрованного изображения от параметра шума (в одних осях для разных фильтров).

 

Исходное изображение.

 

 

2. Анализ технического задания

 

Медианные фильтры достаточно часто применяются на практике как средство предварительной обработки цифровых данных. Специфической особенностью фильтров является явно выраженная избирательность по отношению к элементам массива, представляющим собой немонотонную составляющую последовательности чисел в пределах окна (апертуры) фильтра, и резко выделяющихся на фоне соседних отсчетов. В то же время на монотонную составляющую последовательности медианный фильтр не действует, оставляя её без изменений. Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре могут, например, сохранять без искажений резкие границы объектов, эффективно подавляя некоррелированные или слабо коррелированные помехи и малоразмерные детали. Это свойство позволяет применять медианную фильтрацию для устранения аномальных значений в массивах данных, уменьшения выбросов и импульсных помех. Характерной особенностью медианного фильтра является его нелинейность. Во многих случаях применение медианного фильтра оказывается более эффективным по сравнению с линейными фильтрами, поскольку процедуры линейной обработки являются оптимальными при равномерном или гауссовом распределении помех, что в реальных сигналах может быть далеко не так. В случаях, когда перепады значений сигналов велики по сравнению с дисперсией аддитивного белого шума, медианный фильтр дает меньшее значение среднеквадратической ошибки по сравнению с оптимальными линейными фильтрами. Особенно эффективным медианный фильтр оказывается при очистке сигналов от импульсных шумов при обработке изображений, акустических сигналов, передаче кодовых сигналов и т.п. Однако детальные исследования свойств медианных фильтров как средства фильтрации сигналов различного типа являются довольно редкими.

 

Медианный фильтр. Медианная фильтрация

 

В настоящее время методы цифровой обработки сигналов получили широкое распространение в телевидении, радиотехнике, системах связи, управления и контроля. Одной из самых распространенных операций при такой обработке является цифровая фильтрация сигналов.

Медианная фильтрация была предложена Тьюки в качестве инструмента сглаживания временных рядов, встречающихся в экономических исследованиях, а в дальнейшем она стала широко применяться при обработке изображений, речевых сигналов и т. п.

Медиа́нный фи́льтр — один из видов цифровых фильтров, широко используемый в цифровой обработке сигналов и изображений для уменьшения уровня шума. Медианный фильтр является нелинейным КИХ-фильтром.

Значения отсчётов внутри окна фильтра сортируются в порядке возрастания (убывания); и значение, находящееся в середине упорядоченного списка, поступает на выход фильтра. В случае четного числа отсчетов в окне выходное значение фильтра равно среднему значению двух отсчетов в середине упорядоченного списка. Окно перемещается вдоль фильтруемого сигнала и вычисления повторяются.

Медианная фильтрация — эффективная процедура обработки сигналов, подверженных воздействию импульсных помех.

 

Медианная фильтрация.

 

Медианная фильтрация осуществляет замену значений отсчетов в центре апертуры медианным значением исходных отсчетов внутри апертуры фильтра. На практике апертура фильтра для упрощения алгоритмов обработки данных, как правило, устанавливается с нечетным числом отсчетов, что и будет приниматься при рассмотрении в дальнейшем без дополнительных пояснений.

Медианная фильтрация реализуется в виде процедуры локальной обработки отсчетов в скользящем окне, которое включает определенное число отсчетов сигнала. Для каждого положения окна выделенные в нем отсчеты ранжируются по возрастанию или убыванию значений. Средний по своему положению отчет в ранжированном списке называется медианой рассматриваемой группы отсчетов. Этим отсчетом заменяется центральный отсчет в окне для обрабатываемого сигнала. В силу этого медианный фильтр относится к числу нелинейных фильтров, заменяющим медианным значением аномальные точки и выбросы независимо от их амплитудных значений, и является устойчивым по определению, способным аннулировать даже бесконечно большие отсчеты.

Алгоритм медианной фильтрации обладает явно выраженной избирательностью к элементам массива с немонотонной составляющей последовательности чисел в пределах апертуры и наиболее эффективно исключает из сигналов одиночные выбросы, отрицательные и положительные, попадающие на края ранжированного списка. С учетом ранжирования в списке медианные фильтры хорошо подавляют шумы и помехи, протяженность которых составляет менее половины окна. Стабильной точкой является последовательность (в одномерном случае) или массив (в двумерном случае), которые не изменяются при медианной фильтрации. В одномерном случае стабильными точками медианных фильтров являются "локально-монотонные" последовательности, которые медианный фильтр оставляет без изменений. Исключение составляют некоторые периодические двоичные последо-вательности.



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 3397; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.204.34.64 (0.145 с.)